From: Roger Bagula on

Resolution isn't much...
http://www.flickr.com/photos/fractalmusic/4203226808/
Clear[x, y, z, pc, n]
n = 30; norm[x_] := x.x; pc = {-0.122561, 0.744862, 0}; m0 = 3;
(* By Roger Bagula and Paul Nylander 21 Dec 2009©*)
Square[{x_, y_, z_}] := If[x == y == 0, {-z^2, 0, 0}, Module[{a = 1 -
z^2/(x^2 + y^2)}, {(x^2 - y^2)a, 2 x y a, -2 z Sqrt[x^2 + y^2]}]];
Julia3D[p0_] := Module[{p = p0, i = 0}, While[i <24 && norm[p] < 4, p =
N[Square[p] + pc]; i++]; i];

image1 = Table[z = 1.5; While[z >= -1.5 && Julia3D[{x, y, z}] < 24, z -=
m0/n]; If[z <= -1.51, {EdgeForm[], Cuboid[{0, 0,
0}, {m0/n, m0/n, m0/n}]}, {EdgeForm[], Cuboid[{x, y, z}, {x + m0/n,
y + m0/n, z + m0/n}]}], {y, -1.5, 1.5, m0/n}, {x, -1.5, 1.5, m0/n}];
image2 = Table[z = -1.5; While[z <= 1.5 && Julia3D[{
x, y, z}] < 24, z += m0/n]; If[z ≥ 1.491.5, {EdgeForm[],
Cuboid[{0, 0, 0}, {m0/n,
m0/n, m0/n}]}, {EdgeForm[], Cuboid[{x, y, z}, {x + m0/n, y + m0/n, z +
m0/n}]}], {y, -1.5, 1.5, m0/n}, {x, -1.5, 1.5, m0/n}];
image3 = Table[y = 1.5; While[y >= -1.5 && Julia3D[{x, y, z}] < 24,
y -= m0/n]; If[y <= -1.51, {EdgeForm[],
Cuboid[{0, 0, 0}, {m0/n, m0/n, m0/n}]}, {
EdgeForm[], Cuboid[{x, y, z}, {x + m0/n, y +
m0/n, z + m0/n}]}], {z, -1.5, 1.5, m0/n}, {x, -1.5, 1.5, m0/n}];
image4 = Table[y = -1.5; While[y <= 1.5 && Julia3D[{x, y, z}] < 24,
y += m0/n]; If[y >= 1.49, {EdgeForm[], Cuboid[{0, 0, 0}, {m0/n,
m0/n, m0/n}]}, {
EdgeForm[], Cuboid[{x, y, z}, {
x + m0/n, y +
m0/n, z + m0/n}]}], {z, -1.5, 1.5, m0/n}, {x, -1.5, 1.5, m0/n}];

image0 = Join[image1, image2, image3, image4];

gr1 = Show[Graphics3D[image0, Boxed -> False, PlotRange -> All]]

The Mandelbulb by this method:
http://www.flickr.com/photos/fractalmusic/4198510584/in/photostream/
Respectfully, Roger L. Bagula
11759 Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :
http://www.google.com/profiles/Roger.Bagula
alternative email: roger.bagula(a)gmail.com






 | 
Pages: 1
Prev: Epidemic Model
Next: .eps file in MATHEMATICA