Prev: Solutions manual to Engineering Mechanics, dynamics 6th by J. L. Meriam, L. G. Kraige,
Next: Novelty Phony NVQ
From: mina_world on 21 Nov 2008 06:53 Hello teacher~ Let D_2n = <r, s | r^n = s^2 = e, s.r.s = r^-1> be the usual presentation of the dihedral group of order 2n and let k be a positive integer dividing n. (a) Prove that <r^k> is a normal subgroup of D_2n. (b) Prove that D_2n / <r^k> ~ D_2k. ----------------------------------------------------------------------------- pf) (a) D_2n = {e, r, r^2, ... , r^(n-1), s, sr, sr^2, ... , sr^(n-1)} (1) r^i.<r^k> = <r^k>.r^i (2) s.<r^k> = <r^k>.s [ <==> s.<r^k>.s = <r^k> ] Because, s.r.s = r^-1 ==> s.r^(km).s = r^(-km) Since s.r^(km).s = r^(-km) in <r^k> and |s.<r^k>.s| = |<r^k>|, so, s.<r^k>.s = <r^k> so, s.<r^k> = <r^k>.s (3) s.r^i.<r^k> = <r^k>.s.r^i [ <==> s.r^k.<r^k>.r^-i.s^-1 = <r^k> ] Because, s.r^i.r^(km).r^-i.s^-1 = s.r^(km).s^-1 = r^(-km) in <r^k> and |s.r^k.<r^k>.r^-i.s^-1| = |<r^k>|, so, s.r^k.<r^k>.r^-i.s^-1 = <r^k> so, s.r^i.<r^k> = <r^k>.s.r^i It means that <r^k> is a normal subgroup of D_2n. (b) Let k | n. so, |<r>| = n, |<r^k>| = n / (k, n) = n/k so, |D_2n / <r^k>| = (2n) / (n/k) = 2k |r<r^k>| = k and |s<r^k>| = 2 [s.<r^k>][r.<r^k>][s.<r^k>] = s.r.s.<r^k> = r^-1.<r^k> It means that D_2n / <r^k> ~ D_2k. |