From: Artur on
Dear Mathematica Gurus.
Who know how force simplification of polynomials (x^n - 1)/(x - 1)] by
Mathematica
Table[FullSimplify[(x^n - 1)/(x - 1)], {n, 1, 10}]
Above eliminate denominator only in first 5 n
Any idea ?
Best wishes
Artur

From: Bob Hanlon on

The fractions are simpler for larger n so you cannot use only FullSimplify to eliminate the fractions.

Table[
(x^n - 1)/(x - 1),
{n, 1, 10}]

{1, (x^2 - 1)/(x - 1),
(x^3 - 1)/(x - 1), (x^4 - 1)/
(x - 1), (x^5 - 1)/(x - 1),
(x^6 - 1)/(x - 1), (x^7 - 1)/
(x - 1), (x^8 - 1)/(x - 1),
(x^9 - 1)/(x - 1), (x^10 - 1)/
(x - 1)}

LeafCount /@ %

{1,11,11,11,11,11,11,11,11,11}

Table[
FullSimplify[
(x^n - 1)/(x - 1)],
{n, 1, 10}]

{1, x + 1, x^2 + x + 1,
(x + 1)*(x^2 + 1), x^4 + x^3 +
x^2 + x + 1, (x^6 - 1)/(x - 1),
(x^7 - 1)/(x - 1), (x^8 - 1)/
(x - 1), (x^9 - 1)/(x - 1),
(x^10 - 1)/(x - 1)}

LeafCount /@ %

{1,3,6,9,12,11,11,11,11,11}

soln = Table[
FullSimplify[
Together[
(x^n - 1)/(x - 1)]],
{n, 1, 10}]

{1, x + 1, x^2 + x + 1,
(x + 1)*(x^2 + 1), x^4 + x^3 +
x^2 + x + 1, x^5 + x^4 + x^3 +
x^2 + x + 1, x^6 + x^5 + x^4 +
x^3 + x^2 + x + 1,
(x + 1)*(x^2 + 1)*(x^4 + 1),
(x^2 + x + 1)*(x^6 + x^3 + 1),
x*(x^2 + x + 1)*(x^6 + x^3 + 1) +
1}

LeafCount /@ %

{1,3,6,9,12,15,18,14,15,18}


Bob Hanlon

---- Artur <grafix(a)csl.pl> wrote:

=============
Dear Mathematica Gurus.
Who know how force simplification of polynomials (x^n - 1)/(x - 1)] by
Mathematica
Table[FullSimplify[(x^n - 1)/(x - 1)], {n, 1, 10}]
Above eliminate denominator only in first 5 n
Any idea ?
Best wishes
Artur


From: Murray Eisenberg on
It depends on what form you want for the quotients. Two ways are:


Table[Expand[Factor[(x^n - 1)/(x - 1)]], {n, 1, 10}]
Table[Factor[(x^n - 1)/(x - 1)], {n, 1, 10}]

On 3/16/2010 5:44 AM, Artur wrote:
> Dear Mathematica Gurus.
> Who know how force simplification of polynomials (x^n - 1)/(x - 1)] by
> Mathematica
> Table[FullSimplify[(x^n - 1)/(x - 1)], {n, 1, 10}]
> Above eliminate denominator only in first 5 n
> Any idea ?
> Best wishes
> Artur
>

--
Murray Eisenberg murray(a)math.umass.edu
Mathematics & Statistics Dept.
Lederle Graduate Research Tower phone 413 549-1020 (H)
University of Massachusetts 413 545-2859 (W)
710 North Pleasant Street fax 413 545-1801
Amherst, MA 01003-9305

From: dh on
Hi Arthur,
it depends on what is considered "simplier". The main factor is the
LeafCount as you may see from the following.:
{FullSimplify[#], LeafCount[Table[x^i, {i, 0, n - 1}]],
LeafCount[#]} & [(x^n - 1)/(x - 1)], {n, 1, 10}] // TableForm
Other factors must be taken into account as n=5 shows.
Daniel

On 16.03.2010 10:49, Artur wrote:
> Dear Mathematica Gurus.
> Who know how force simplification of polynomials (x^n - 1)/(x - 1)] by
> Mathematica
> Table[FullSimplify[(x^n - 1)/(x - 1)], {n, 1, 10}]
> Above eliminate denominator only in first 5 n
> Any idea ?
> Best wishes
> Artur
>


--

Daniel Huber
Metrohm Ltd.
Oberdorfstr. 68
CH-9100 Herisau
Tel. +41 71 353 8585, Fax +41 71 353 8907
E-Mail:<mailto:dh(a)metrohm.com>
Internet:<http://www.metrohm.com>


From: Alexander Elkins on
"Artur" <grafix(a)csl.pl> wrote in message news:hnnk72$ckb$1(a)smc.vnet.net...
> Dear Mathematica Gurus.
> Who know how force simplification of polynomials (x^n - 1)/(x - 1)] by
> Mathematica
> Table[FullSimplify[(x^n - 1)/(x - 1)], {n, 1, 10}]
> Above eliminate denominator only in first 5 n
> Any idea ?
> Best wishes
> Artur
>

Here is a general solution to what you appear to be seeking to obtain that
does not use FullSimplify:

In[1]:=
Column[Table[PolynomialQuotient[#1,#2,#3]+PolynomialRemainder[#1,#2,#3]/#2,{
n,1,10}]&[x^n-1,x-1,x]]
Out[1]= 1
1+x
1+x+x^2
1+x+x^2+x^3
1+x+x^2+x^3+x^4
1+x+x^2+x^3+x^4+x^5
1+x+x^2+x^3+x^4+x^5+x^6
1+x+x^2+x^3+x^4+x^5+x^6+x^7
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8
1+x+x^2+x^3+x^4+x^5+x^6+x^7+x^8+x^9

Of course for x^n-1 with n > 1 && Element[n, Integers] the
PolynomialRemainder[x^n-1,x-1,x] is always zero so you can also simplify
your particular example just using Factor:

In[2]:= Column[Table[Factor[x^n-1]/(x-1),{n,1,10}]]
Out[2]= 1
1+x
1+x+x^2
(1+x) (1+x^2)
1+x+x^2+x^3+x^4
(1+x) (1-x+x^2) (1+x+x^2)
1+x+x^2+x^3+x^4+x^5+x^6
(1+x) (1+x^2) (1+x^4)
(1+x+x^2) (1+x^3+x^6)
(1+x) (1-x+x^2-x^3+x^4) (1+x+x^2+x^3+x^4)

Perhaps you will also notice that the factors are the same as the cyclotomic
polynomials of all of the factors on n, so that for x^n-1 with n > 1 &&
Element[n, Integers] the following is true:

In[3]:=
Table[Factor[x^n-1],{n,1,10}]==Table[Times@@Cyclotomic[Times@@@Tuples[Union[
#1^Range[0,#2]]&@@@FactorInteger[n]],x],{n,1,10}]
Out[3]= True

Union is used only to handle the special case of 1^Range[0,1] which produces
{{1, 1}} instead of the desired {{1}}

Note that x - 1 == Cyclotomic[1, x].
Hope this helps...





 |  Next  |  Last
Pages: 1 2
Prev: Findroot
Next: Styling print output