Prev: modelling class d amplifiers in simulink
Next: Alternative approach than "fmincon" to maximize a function under non-linear constraints
From: Vladimir Bondarenko on 3 Aug 2010 21:15 Hello, Mathematica: Integrate[Erf[ArcSin[z]]/Sqrt[1 + z], {z, 0, 1}] Maple: int(erf(arcsin(z))/sqrt(1 + z), z= 0..1); ? Cheers, Vladimir Bondarenko Co-founder, CEO, Mathematical Director http://www.cybertester.com/ Cyber Tester Ltd. ---------------------------------------------------------------- "We must understand that technologies like these are the way of the future." ---------------------------------------------------------------- http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 "...... the challenges imply that a solution is built within the framework of the existent CAS functions & built-in definitions." ---------------------------------------------------------------- ----------------------------------------------------------------
From: Valeri Astanoff on 4 Aug 2010 04:30
On 4 août, 03:15, Vladimir Bondarenko <v...(a)cybertester.com> wrote: > Hello, > > Mathematica: > > Integrate[Erf[ArcSin[z]]/Sqrt[1 + z], {z, 0, 1}] > > Maple: > > int(erf(arcsin(z))/sqrt(1 + z), z= 0..1); > > ? > Cheers, > > Vladimir Bondarenko > > Co-founder, CEO, Mathematical Director > > http://www.cybertester.com/ Cyber Tester Ltd. > > ---------------------------------------------------------------- > > "We must understand that technologies > like these are the way of the future." > > ---------------------------------------------------------------- > > http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 > > "...... the challenges imply that a solution is built within the > framework of the existent CAS functions & built-in definitions." > > ---------------------------------------------------------------- > ---------------------------------------------------------------- Good day, A partly manual solution with mma 6 : In[1]:= f[z_] = Erf[ArcSin[z]]/Sqrt[1 + z]; In[2]:= g[t_] = f[z] dz /. z -> Sin[t] /. dz -> Cos[t] // Simplify[#, 0 < t < \[Pi]/2] & Out[2]= (Cos[t]*Erf[t])/Sqrt[1 + Sin[t]] In[3]:= Integrate[g[t], {t, 0, \[Pi]/2}] Out[3]= 2*Sqrt[2]*Erf[Pi/2] + ((1 + I)*(-1 + Erfc[I/4 + Pi/2] - (1 - I)*Erfi[1/4] + Erfi[1/4 + (I*Pi)/2]))/E^(1/16) In[4]:= % // N // Chop Out[4]= 0.40731 Numerical check: In[5]:= NIntegrate[f[z], {z, 0, 1}] Out[5]= 0.40731 -- v.a. |