Prev: Wanted: Quantitative Measurement of Open Mindedness
Next: Proof of the weak version of Goldbach that every odd number >5 is the sum of three primes #688: Correcting Math
From: Vladimir Bondarenko on 17 Jul 2010 03:00 Hello, (-1)^(1/4)*( EllipticF ((-1)^(3/4), I) - 2*EllipticPi((-1)^(3/4),-I,I) ) ? Cheers, Vladimir Bondarenko Co-founder, CEO, Mathematical Director http://www.cybertester.com/ Cyber Tester Ltd. ---------------------------------------------------------------- "We must understand that technologies like these are the way of the future." ---------------------------------------------------------------- ---------------------------------------------------------------- http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 "...... the challenges imply that a solution is built within the framework of the existent CAS functions & built-in definitions." ---------------------------------------------------------------- ----------------------------------------------------------------
From: Axel Vogt on 17 Jul 2010 03:16 Vladimir Bondarenko wrote: > Hello, > > (-1)^(1/4)*( EllipticF ((-1)^(3/4), I) - > 2*EllipticPi((-1)^(3/4),-I,I) ) > > ? using Maple 12: convert(v, Int); combine(%); Change(%, _alpha1 = x*(-1)^(3/4),x); value(%); sqrt(2)*Pi/8
From: Nasser M. Abbasi on 17 Jul 2010 03:56
On 7/17/2010 12:00 AM, Vladimir Bondarenko wrote: > Hello, > > (-1)^(1/4)*( EllipticF ((-1)^(3/4), I) - > 2*EllipticPi((-1)^(3/4),-I,I) ) > > ? > Cheers, r:=(-1)^(1/4)*( EllipticF ((-1)^(3/4), I) - 2*EllipticPi((-1)^(3/4),-I,I) ); simplify(value(convert(r,compose,Int,exp))); (1/8)*Pi*sqrt(2) Maple 14 --Nasser ps. trimed number of newsgroups, limit problem |