From: Vladimir Bondarenko on
Hello,

Mathematica:

2*(-1)^(1/6)*(-2*I*EllipticF[I*ArcSinh[(-1)^(5/6)],(-1)^(2/3)]-
(-1)^(1/6)*EllipticK[-(-1)^(1/3)]+EllipticK[1-(-1)^(2/3)]+
I*EllipticPi[(-1)^(1/3),(-1)^(2/3)]+
(-1)^(1/6)*EllipticPi[-(-1)^(2/3),-(-1)^(1/3)]-
2*I*EllipticPi[(-1)^(1/3),(-I)*ArcSinh[(-1)^(5/6)],(-1)^(2/3)])

Maple:

2*(-1)^(1/6)*(2*I*EllipticF((-1)^(1/3),(-1)^(1/3))-
(-1)^(1/6)*EllipticK((-(-1)^(1/3))^(1/2))+
EllipticK((1-(-1)^(2/3))^(1/2))+
I*EllipticPi((-1)^(1/3),(-1)^(1/3))+
(-1)^(1/6)*EllipticPi(-(-1)^(2/3),(-(-1)^(1/3))^(1/2))-
2*I*EllipticPi((-1)^(1/3),(-1)^(1/3),(-1)^(1/3)))

[= 1.047...] = ?

Cheers,

Vladimir Bondarenko

Co-founder, CEO, Mathematical Director

http://www.cybertester.com/ Cyber Tester Ltd.

----------------------------------------------------------------

"We must understand that technologies
like these are the way of the future."

----------------------------------------------------------------
----------------------------------------------------------------

http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5

"...... the challenges imply that a solution is built within the
framework of the existent CAS functions & built-in definitions."

----------------------------------------------------------------
----------------------------------------------------------------
From: Nasser M. Abbasi on
On Jul 17, 10:32 am, Vladimir Bondarenko <v...(a)cybertester.com> wrote:

> Maple:
>
> 2*(-1)^(1/6)*(2*I*EllipticF((-1)^(1/3),(-1)^(1/3))-
> (-1)^(1/6)*EllipticK((-(-1)^(1/3))^(1/2))+
> EllipticK((1-(-1)^(2/3))^(1/2))+
> I*EllipticPi((-1)^(1/3),(-1)^(1/3))+
> (-1)^(1/6)*EllipticPi(-(-1)^(2/3),(-(-1)^(1/3))^(1/2))-
> 2*I*EllipticPi((-1)^(1/3),(-1)^(1/3),(-1)^(1/3)))
>
>        [= 1.047...] =     ?
>


Do you think this below is a strange behavior of Maple 14?

restart;
r:=2*(-1)^(1/6)*(2*I*EllipticF((-1)^(1/3),(-1)^(1/3))-
(-1)^(1/6)*EllipticK((-(-1)^(1/3))^(1/2))+EllipticK((1-
(-1)^(2/3))^(1/2))+I*EllipticPi((-1)^(1/3),(-1)^(1/3))+
(-1)^(1/6)*EllipticPi(-(-1)^(2/3),(-
(-1)^(1/3))^(1/2))-2*I*EllipticPi((-1)^(1/3),(-1)^(1/3),(-1)^(1/3))):


evalf(r);

-10
1.047197551 + 9.408996622 10 I


evalf(simplify(r));
7.790198973 - 2.156515648 I

?

--Nasser
From: Vladimir Bondarenko on
On Jul 18, 2:37 am, "Nasser M. Abbasi" <n...(a)12000.org> wrote:
> On Jul 17, 10:32 am, Vladimir Bondarenko <v...(a)cybertester.com> wrote:
>
> > Maple:
>
> > 2*(-1)^(1/6)*(2*I*EllipticF((-1)^(1/3),(-1)^(1/3))-
> > (-1)^(1/6)*EllipticK((-(-1)^(1/3))^(1/2))+
> > EllipticK((1-(-1)^(2/3))^(1/2))+
> > I*EllipticPi((-1)^(1/3),(-1)^(1/3))+
> > (-1)^(1/6)*EllipticPi(-(-1)^(2/3),(-(-1)^(1/3))^(1/2))-
> > 2*I*EllipticPi((-1)^(1/3),(-1)^(1/3),(-1)^(1/3)))
>
> >        [= 1.047...] =     ?
>
> Do you think this below is a strange behavior of Maple 14?
>
> restart;
> r:=2*(-1)^(1/6)*(2*I*EllipticF((-1)^(1/3),(-1)^(1/3))-
> (-1)^(1/6)*EllipticK((-(-1)^(1/3))^(1/2))+EllipticK((1-
> (-1)^(2/3))^(1/2))+I*EllipticPi((-1)^(1/3),(-1)^(1/3))+
> (-1)^(1/6)*EllipticPi(-(-1)^(2/3),(-
> (-1)^(1/3))^(1/2))-2*I*EllipticPi((-1)^(1/3),(-1)^(1/3),(-1)^(1/3))):
>
> evalf(r);
>
> -10
>                1.047197551 + 9.408996622 10    I
>
> evalf(simplify(r));
>                   7.790198973 - 2.156515648 I
>
> ?
>
> --Nasser

Hi Nasser,

This is an error in programming made years ago
by Maplesoft:


Maple 14/13/12/11 7.790198973 - 2.156515648*I

2006 Maple 10 7.790198973 - .2e-8*I

2004 Maple 9.5 2.250951140 - .464082264*I

Best,

Vladimir
From: Vladimir Bondarenko on
On Jul 17, 8:32 pm, Vladimir Bondarenko <v...(a)cybertester.com> wrote:
> Hello,
>
> Mathematica:
>
> 2*(-1)^(1/6)*(-2*I*EllipticF[I*ArcSinh[(-1)^(5/6)],(-1)^(2/3)]-
> (-1)^(1/6)*EllipticK[-(-1)^(1/3)]+EllipticK[1-(-1)^(2/3)]+
> I*EllipticPi[(-1)^(1/3),(-1)^(2/3)]+
> (-1)^(1/6)*EllipticPi[-(-1)^(2/3),-(-1)^(1/3)]-
> 2*I*EllipticPi[(-1)^(1/3),(-I)*ArcSinh[(-1)^(5/6)],(-1)^(2/3)])
>
> Maple:
>
> 2*(-1)^(1/6)*(2*I*EllipticF((-1)^(1/3),(-1)^(1/3))-
> (-1)^(1/6)*EllipticK((-(-1)^(1/3))^(1/2))+
> EllipticK((1-(-1)^(2/3))^(1/2))+
> I*EllipticPi((-1)^(1/3),(-1)^(1/3))+
> (-1)^(1/6)*EllipticPi(-(-1)^(2/3),(-(-1)^(1/3))^(1/2))-
> 2*I*EllipticPi((-1)^(1/3),(-1)^(1/3),(-1)^(1/3)))
>
>        [= 1.047...] =     ?
>
> Cheers,
>
> Vladimir Bondarenko
>
> Co-founder, CEO, Mathematical Director
>
> http://www.cybertester.com/ Cyber Tester Ltd.
>
> ----------------------------------------------------------------
>
> "We must understand that technologies
> like these are the way of the future."
>
> ----------------------------------------------------------------
> ----------------------------------------------------------------
>
> http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5
>
> "...... the challenges imply that a solution is built within the
> framework of the existent CAS functions & built-in definitions."
>
> ----------------------------------------------------------------
> ----------------------------------------------------------------

A hint:

The answer is Pi/3

:)