Prev: Lwalk or Mr. Transfer P becoming the third human to do the only valid correct Indirect Euclid IP #4.14 Correcting Math
Next: An investment problem
From: Vladimir Bondarenko on 24 Jul 2010 05:42 Hello, Mathematica: MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}}, {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1] Maple: MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []], [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1) Can you "elementarize" this ? Cheers, Vladimir Bondarenko Co-founder, CEO, Mathematical Director http://www.cybertester.com/ Cyber Tester Ltd. ---------------------------------------------------------------- "We must understand that technologies like these are the way of the future." ---------------------------------------------------------------- ---------------------------------------------------------------- http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 "...... the challenges imply that a solution is built within the framework of the existent CAS functions & built-in definitions." ---------------------------------------------------------------- ----------------------------------------------------------------
From: Nasser M. Abbasi on 24 Jul 2010 06:16 On Jul 24, 2:42 am, Vladimir Bondarenko <v...(a)cybertester.com> wrote: > Hello, > > Mathematica: > > MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}}, > {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1] > > Maple: > > MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []], > [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1) > > Can you "elementarize" this ? > Any idea why you think Mathematica gives a numerical value for this, but Maple 14 does not? In[3]:= MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}}, {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1]; In[4]:= N[%] Out[4]= 35067.19023695839 + 9.41384355619209*^-58*I r:=MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []], [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1): evalf(r); MeijerG([[.1000000000, .3000000000, .4000000000, .5000000000, . 7000000000, .9000000000, .9000000000], []], [[.9000000000, . 8000000000, .6000000000, .4000000000, .4000000000, .2000000000, 0.], []], 1.) --Nasser
From: Vladimir Bondarenko on 24 Jul 2010 07:59
Hi Nasser, This is yet another Maple bug. It was introduced not later than in 2003. Now we have not a quick opportunity to verify Maple 8 and earlier versions; so we urge the Maple 8/7/6 users to share their results. Thanks. Cheers, Vladimir -- Vladimir Bondarenko Co-founder, CEO, Mathematical Director http://www.cybertester.com/ Cyber Tester Ltd. ---------------------------------------------------------------- "We must understand that technologies like these are the way of the future." ---------------------------------------------------------------- ---------------------------------------------------------------- On Jul 24, 1:16 pm, "Nasser M. Abbasi" <n...(a)12000.org> wrote: > On Jul 24, 2:42 am, Vladimir Bondarenko <v...(a)cybertester.com> wrote: > > > Hello, > > > Mathematica: > > > MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}}, > > {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1] > > > Maple: > > > MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []], > > [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1) > > > Can you "elementarize" this ? > > Any idea why you think Mathematica gives a numerical value for this, > but Maple 14 does not? > > In[3]:= MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}}, > {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1]; > In[4]:= N[%] > Out[4]= 35067.19023695839 + 9.41384355619209*^-58*I > > r:=MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []], > [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1): > > evalf(r); > > MeijerG([[.1000000000, .3000000000, .4000000000, .5000000000, . > 7000000000, .9000000000, .9000000000], []], [[.9000000000, . > 8000000000, .6000000000, .4000000000, .4000000000, .2000000000, 0.], > []], 1.) > > --Nasser |