From: Vladimir Bondarenko on
Hello,

Mathematica:

MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}},
{{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1]

Maple:

MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []],
[[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1)

Can you "elementarize" this ?

Cheers,

Vladimir Bondarenko

Co-founder, CEO, Mathematical Director

http://www.cybertester.com/ Cyber Tester Ltd.

----------------------------------------------------------------

"We must understand that technologies
like these are the way of the future."

----------------------------------------------------------------
----------------------------------------------------------------

http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5

"...... the challenges imply that a solution is built within the
framework of the existent CAS functions & built-in definitions."

----------------------------------------------------------------
----------------------------------------------------------------
From: Nasser M. Abbasi on
On Jul 24, 2:42 am, Vladimir Bondarenko <v...(a)cybertester.com> wrote:
> Hello,
>
> Mathematica:
>
> MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}},
>         {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1]
>
> Maple:
>
> MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []],
>         [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1)
>
> Can you "elementarize" this ?
>

Any idea why you think Mathematica gives a numerical value for this,
but Maple 14 does not?


In[3]:= MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}},
{{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1];
In[4]:= N[%]
Out[4]= 35067.19023695839 + 9.41384355619209*^-58*I


r:=MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []],
[[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1):

evalf(r);

MeijerG([[.1000000000, .3000000000, .4000000000, .5000000000, .
7000000000, .9000000000, .9000000000], []], [[.9000000000, .
8000000000, .6000000000, .4000000000, .4000000000, .2000000000, 0.],
[]], 1.)

--Nasser
From: Vladimir Bondarenko on
Hi Nasser,

This is yet another Maple bug. It was introduced not
later than in 2003. Now we have not a quick opportunity
to verify Maple 8 and earlier versions; so we urge the
Maple 8/7/6 users to share their results. Thanks.

Cheers,

Vladimir

--

Vladimir Bondarenko

Co-founder, CEO, Mathematical Director

http://www.cybertester.com/ Cyber Tester Ltd.

----------------------------------------------------------------

"We must understand that technologies
like these are the way of the future."

----------------------------------------------------------------
----------------------------------------------------------------




On Jul 24, 1:16 pm, "Nasser M. Abbasi" <n...(a)12000.org> wrote:
> On Jul 24, 2:42 am, Vladimir Bondarenko <v...(a)cybertester.com> wrote:
>
> > Hello,
>
> > Mathematica:
>
> > MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}},
> >         {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1]
>
> > Maple:
>
> > MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []],
> >         [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1)
>
> > Can you "elementarize" this ?
>
> Any idea why you think Mathematica gives a numerical value for this,
> but Maple 14 does not?
>
> In[3]:= MeijerG[{{1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10}, {}},
>    {{0, 1/5, 2/5, 2/5, 3/5, 4/5, 9/10}, {}}, 1];
> In[4]:= N[%]
> Out[4]= 35067.19023695839 + 9.41384355619209*^-58*I
>
> r:=MeijerG([[1/10, 3/10, 2/5, 1/2, 7/10, 9/10, 9/10], []],
> [[9/10, 4/5, 3/5, 2/5, 2/5, 1/5, 0], []], 1):
>
> evalf(r);
>
> MeijerG([[.1000000000, .3000000000, .4000000000, .5000000000, .
> 7000000000, .9000000000, .9000000000], []], [[.9000000000, .
> 8000000000, .6000000000, .4000000000, .4000000000, .2000000000, 0.],
> []], 1.)
>
> --Nasser