From: usenet on
Forwarded message from Dr. Navaratna S. Rajaram

INDIA'S CONTRIBUTION TO THE WORLD OF NUMBERS

Dr. Navaratna S. Rajaram

To be broadcast at 9:10 PM (IST) on July 21, 2010

First I want to thank Prasara Bharati and the All India Radio for
inviting me to speak about numbers, a subject that is close to my
heart.

I am a mathematician by training and have taught, conducted research
and written about mathematics for more than thirty years. Based on
this experience I would not be exaggerating when I say that the
discovery of numbers and how to use them is the greatest invention
ever made by man.

Without an efficient number system there can be no mathematics and
without mathematics there can be no science and no technology.

Humanity struggled with the idea of numbers and counting for
thousands of years until Indian mathematicians and philosophers
solved the problem by inventing the positional or the place value
number system more than two thousand years ago.

The key idea was identifying positions by numbers that we call a
base.

In the decimal system that is now universal, the base is ten; in the
binary system used in computers, the base is two. With the invention
of the positional or the place value system, multiplication, which
used to be an incredibly difficult problem, became so easy that we
now teach it to children. All you need to multiply by ten is to shift
one position. In the binary system shifting doubles the number.

In binary form it is perfectly suited to computers also because
numbers can be represented by rows of switches or some other device.
You need only zero and one to represent any number. So, in the binary
notation, a number becomes a row of zeroes and ones. This can be
represented by a row of switches or lights with on for one and off
for zero. This was how it was done in early computers though later,
transistors and microprocessors greatly simplified the engineering.
But the basic mathematics is still based on the positional number
system invented more than two thousand years ago.

Today we use both the decimal system and the binary system. Both were
invented in ancient India. The key breakthrough, as I just said is
the idea of identifying the position with a base? ten for the decimal
and two for the binary. Other bases are also used especially in
computer design. It is a mistake therefore to say that the Indians
invented the decimal system and the zero: they invented the whole
concept of the place value arithmetic of which the decimal is a
special case. The real breakthrough was achieving a synthesis of
diverse ideas.

What makes the positional system perfect is the synthesis of three
simple yet profound ideas: zero as a numerical symbol; zero having
'nothing' as its value; and the zero as a position in a number
string. Other civilizations, including the Babylonian and the Maya,
discovered one or other feature but failed to achieve the grand
synthesis that gave us the modern system. Of the world's
civilizations, the Mayas came closest. They, like the Babylonians,
had an idea of the zero, but never learnt how to operate with it. The
rules were laid out most clearly by the Indian mathematician
Brahmagupta 1500 years ago. It is still the method we use.

This synthesis was possible due to the Indians' capacity for abstract
thought: they saw numbers not as visual aids to counting, but as
abstract symbols. While other number systems, like the Roman numerals
for example, expressed numbers visually, Indians early broke free of
this shackle and saw numbers as pure symbols with values. We see it
in other fields also. The great grammarian Panini describes the
Indian alphabet in purely phonetic terms, without reference to
symbols. It is the same in music. While the Western musical notation
depends on both the form and the location of notes written across
staves, the Indian notation can use any seven symbols.

The economy and precision of the positional system has made all
others obsolete. Some systems could be marvels of ingenuity, but led
to incredible complexities. The Egyptian hieroglyphic system needed
27 symbols to write a simple four-digit number like 7659. Another
indispensable feature of the Indian system is its uniqueness. Once
written, it has a single value no matter who reads it. This was not
always the case with other systems. In one Maya example, the same
signs can be read as either 4399 or 4879. It was even worse in the
Babylonian system, where a particular number string can have a value
ranging from 1538 to a fraction less than one! So a team of scribes
had to be on hand to cross check numbers for accuracy as well as
interpretation.

I am prepared to argue that it is mankind's greatest invention. It is
without a doubt the greatest mathematical discovery ever made, and
arguably India's greatest secular contribution to civilization. And
this is not just my opinion. Georges Ifrah in his monumental three-
volume Universal History of Numbers writes:

"Finally it all came to pass as though across the ages and the
civilizations, the human mind had tried all the possible solutions to
the problem of writing numbers, before universally adopting the one
which seemed the most abstract, the most perfected and the most
effective of all."

In these memorable words, the French-Moroccan scholar Georges Ifrah
sums up the many false starts by many civilizations until the Indians
hit upon a method of doing arithmetic which surpassed and supplanted
all others- one without which science, technology and everything else
that we take for granted would be impossible. This of course was the
positional or the place value number system.

Ifrah appreciates the true magnitude of the achievement when he
writes: "The measure of genius of the Indian civilization, to which
we owe our modern system, is all the greater in that it was the only
one in all history to have achieved this triumph." Modern
civilization rests on the modern number system. The decimal and
binary systems are special cases of it as I just noted.

The Indian system is sometimes called 'Arabic numerals' but that is a
misnomer; the Arabs always called them 'Hindi' numerals. What is
remarkable is the relatively unimportant role played by the Greeks.
They were poor at arithmetic and came nowhere near matching the
Indians. Babylonians a thousand years before them were more creative,
and the Maya of pre-Colombian America far surpassed them in both
computation and astronomy. Some European scholars tend to exaggerate
Greek contribution and attribute everything to the Greeks. This so-
called Greek Miracle is a modern European fantasy.

The discovery of the positional number system was not just a
technical advance; it is a defining event in history, like man's
discovery of fire. It changed the terms of human existence. While the
invention of writing by several civilizations was also of momentous
consequence, no writing system ever attained the universality and the
perfection of the positional number system. Today, in the age of
computers and the information revolution, computer code has all but
replaced writing and even pictures.

This would be impossible without the Indian number system, which is
now virtually the universal alphabet as well.

The next question is when and how did this number system evolve? This
is not easy to answer, but I will give it a try. First we need to
clear the confusion created by the claims of some recent books going
by the name of Vedic Mathematics. These are interesting books but
modern in composition and style. What they call Vedic mathematics is
not found in the Vedic literature and the claims they make are highly
exaggerated. So we can put this out of our mind and look at authentic
ancient sources.

We also need to understand a couple of things. The important thing is
the use of the place value method, not the use of ten as the base.
The decimal system is the most widely used, but this must be
separated from the concept of assigning values to places. In the
decimal system, the first position or the rightmost indicates
multiplication by one, the second multiplication by ten, the third by
hundred and so on. In the binary system, two takes the place of ten.
The first position shows multiplication by one, the second by two,
the third by four and so forth. It is this positional method more
than the base of ten or two that makes the Indian system so powerful.

The use of ten as base is ancient and can be found in the Vedas, but
we don't know how they represented them in writing. Incidentally,
there was writing in Vedic times though the texts were memorized. The
oldest mathematical texts that we have are what are known as the
Shulba-sutras. These are parts of Vedic texts that are more or less
contemporary with the Harappan archaeology. They too give no
indication of the use of the decimal place value system.

Curiously, the first indication of the idea of a place value system
is found not in any mathematical text but in a work on poetics called
Chandah-sutra by Pingala. He describes a binary system and solves
several interesting problems involving multiplication and division of
binary numbers. So we can definitely say that the idea of both the
decimal or base ten and the use of position or place value, at least
in the binary case were known in India several centuries before the
beginning of the Christian era.

From this we may reasonably conclude that the modern decimal place
value system arose by adopting to base ten the idea found in
Pingala's binary system. But this is only guesswork at this time. It
is quite possible that further research will reveal that the decimal
place value system was an independent development.

I would like to sound an important cautionary note before I proceed
further: we have to be very careful in accepting the claims of
Western scholars especially of the colonial period. Most of them try
to trace all major Indian achievements to non-Indian sources like the
Greeks, Egyptians and even the Chinese as a recent book claims.
Indian researchers must go to the original sources and not accept
these 'experts' and 'scholars' so-called. It is best assume that
their interpretations are wrong and study the original sources
without prejudice.

The next question is when do we first find the use of this system?
The earliest mathematical text that uses a primitive form of the
decimal system is what is known as the Bakhshali Manuscript. It is
about two thousand years old. It was discovered in 1881 in a village
called Bakhshali near Taxila in present day Pakistan. It is a very
valuable source for gaining some idea of the state of mathematical
knowledge two thousand years ago.

Although the use of zero and the decimal system were known more than
two thousand years ago, it took several centuries before methods
using it were invented and mastered. Aryabhata in the fifth century
seems to have been the first great mathematician to have used it with
great mastery. At least that is the record we have. Following him,
Brahmagupta gave the clearest rules for operations with zero and also
the use of negative numbers. His rules are essentially what we use
today also.

There was a great spurt in mathematical activity in the period
surrounding Aryabhata, and his successors. This may be attributed to
the new methods made possible by the widespread use of zero and the
decimal system. The same thing happened after computers were invented
and their use became widespread some sixty years ago. Problems which
were previously impossible could now be solved thanks to computers,
and new methods were invented. The same thing happened in India with
the zero and the decimal system.

A great discovery like this doesn't go unnoticed. Indian methods were
soon borrowed by the Arabs and the Persians and found their way to
Europe.

Leonardo of Pisa better known as Fibonacci was one of the first
Europeans to learn and use it. Fibonacci lived in the thirteenth
century, which means it took more than five centuries before the
Indian system was widely used in Europe. Even then it met with
resistance.

Because Europeans learned the Indian number system from the Arabs,
they called it Arabic numerals. But the Arabs always stated that they
got it from the Indians. Fibonacci also stated in his book that the
new number system was of Indian origin. Arab records also state that
they translated Indian works going as far back as 425 BC. This should
be a valuable source of research for Indian scholars. They may
discover ancient Indian works that are no longer available in India.

This in brief is the story of how the modern Indian number system
evolved.

It took not centuries, but more than two thousand years.

Thank you!

End of forwarded message Dr. Navaratna S. Rajaram

Jai Maharaj, Jyotishi
Om Shanti

o Not for commercial use. Solely to be fairly used for the educational
purposes of research and open discussion. The contents of this post may not
have been authored by, and do not necessarily represent the opinion of the
poster. The contents are protected by copyright law and the exemption for
fair use of copyrighted works.
o If you send private e-mail to me, it will likely not be read,
considered or answered if it does not contain your full legal name, current
e-mail and postal addresses, and live-voice telephone number.
o Posted for information and discussion. Views expressed by others are
not necessarily those of the poster who may or may not have read the article.

FAIR USE NOTICE: This article may contain copyrighted material the use of
which may or may not have been specifically authorized by the copyright
owner. This material is being made available in efforts to advance the
understanding of environmental, political, human rights, economic,
democratic, scientific, social, and cultural, etc., issues. It is believed
that this constitutes a 'fair use' of any such copyrighted material as
provided for in section 107 of the US Copyright Law. In accordance with Title
17 U.S.C. Section 107, the material on this site is distributed without
profit to those who have expressed a prior interest in receiving the included
information for research, comment, discussion and educational purposes by
subscribing to USENET newsgroups or visiting web sites. For more information
go to: http://www.law.cornell.edu/uscode/17/107.shtml
If you wish to use copyrighted material from this article for purposes of
your own that go beyond 'fair use', you must obtain permission from the
copyright owner.

Since newsgroup posts are being removed
by forgery by one or more net terrorists,
this post may be reposted several times.
From: hari.kumar on
"Humanity struggled with the idea of numbers and counting for
thousands of years until Indian mathematicians and philosophers
solved the problem by inventing the positional or the place value
number system more than two thousand years ago."

No, it was independently discovered in at least two other places before
s. asia.