From: gopher on 12 Apr 2010 23:01 In the following, A and Expand[A] give different answers after when summed (a finite geometric series.) The result of summing A is clearly wrong, since it is independent of the parameters r and s. Abhishek In[44]:= A = x^(i - n) (x^(i - n) (1 - r x^n) - s); A == Expand[A] // Simplify Out[45]= True In[46]:= Sum[A, {i, 0, n - 1}] Out[46]= (x^(-2 n) (-1 + x^(2 n)))/(-1 + x^2) In[47]:= Sum[Expand[A], {i, 0, n - 1}] // FullSimplify Out[47]= -(( x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r x^n)))/(-1 + x^2) )
From: Bob Hanlon on 13 Apr 2010 22:39 Works fine on my system $Version 7.0 for Mac OS X x86 (64-bit) (February 19, 2009) A = x^(i - n) (x^(i - n) (1 - r x^n) - s); A == Expand[A] // Simplify True Sum[A, {i, 0, n - 1}] -(((x^n - 1)*(r*x^(2*n) + r*x^n + s*x^(n + 1) + s*x^n - x^n - 1))/(x^(2*n)*(x^2 - 1))) Sum[Expand[A], {i, 0, n - 1}] // FullSimplify -(((x^n - 1)*(x^n*(r*x^n + r + s*x + s - 1) - 1))/ (x^(2*n)*(x^2 - 1))) % == %% // Simplify True Bob Hanlon ---- gopher <gophergoon(a)gmail.com> wrote: ============= In the following, A and Expand[A] give different answers after when summed (a finite geometric series.) The result of summing A is clearly wrong, since it is independent of the parameters r and s. Abhishek In[44]:= A = x^(i - n) (x^(i - n) (1 - r x^n) - s); A == Expand[A] // Simplify Out[45]= True In[46]:= Sum[A, {i, 0, n - 1}] Out[46]= (x^(-2 n) (-1 + x^(2 n)))/(-1 + x^2) In[47]:= Sum[Expand[A], {i, 0, n - 1}] // FullSimplify Out[47]= -(( x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r x^n)))/(-1 + x^2) )
From: Sjoerd C. de Vries on 13 Apr 2010 22:43 Abhishek, I don't seem to be able to reproduce your bug. For Sum A I get: -((x^(-2 n) (-1 + x^n) (-1 - x^n + r x^n + s x^n + r x^(2 n) + s x^(1 + n)))/(-1 + x^2)) which depends on r and s. Same result for Expand[A]. In[6]:= $Version Out[6]= "7.0 for Microsoft Windows (32-bit) (February 18, 2009)" Cheers -- Sjoerd On Apr 13, 5:01 am, gopher <gopherg...(a)gmail.com> wrote: > In the following, A and Expand[A] give different answers after when > summed (a finite geometric series.) The result of summing A is clearly > wrong, since it is independent of the parameters r and s. > > Abhishek > > In[44]:= A = x^(i - n) (x^(i - n) (1 - r x^n) - s); > A == Expand[A] // Simplify > > Out[45]= True > > In[46]:= Sum[A, {i, 0, n - 1}] > > Out[46]= (x^(-2 n) (-1 + x^(2 n)))/(-1 + x^2) > > In[47]:= Sum[Expand[A], {i, 0, n - 1}] // FullSimplify > > Out[47]= -(( > x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r x^n)))/(-1 + x^2) > )
From: Erik Max Francis on 13 Apr 2010 22:44 gopher wrote: > In the following, A and Expand[A] give different answers after when > summed (a finite geometric series.) The result of summing A is clearly > wrong, since it is independent of the parameters r and s. > > Abhishek > > In[44]:= A = x^(i - n) (x^(i - n) (1 - r x^n) - s); > A == Expand[A] // Simplify > > Out[45]= True > > In[46]:= Sum[A, {i, 0, n - 1}] > > Out[46]= (x^(-2 n) (-1 + x^(2 n)))/(-1 + x^2) > > In[47]:= Sum[Expand[A], {i, 0, n - 1}] // FullSimplify > > Out[47]= -(( > x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r x^n)))/(-1 + x^2) > ) They're both equal. FullSimplify on the first sum results in the same thing: In[17]:= Sum[A, {i, 0, n - 1}] // FullSimplify Out[17]= -(( x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r x^n)))/(-1 + x^2) ) By default Mathematica doesn't do a FullSimplify, so you end up with different, but equal answers. If you do FullSimplify on both, then the answers are not only equal, but identical. -- Erik Max Francis && max(a)alcyone.com && http://www.alcyone.com/max/ San Jose, CA, USA && 37 18 N 121 57 W && AIM/Y!M/Skype erikmaxfrancis There is no fate that cannot be surmounted by scorn. -- Albert Camus
From: Tony Harker on 13 Apr 2010 22:44 What version are you using? 7.0 for Microsoft Windows (32-bit) (February 18, 2009) gives identical, correct, results for both. Tony Harker ]-> -----Original Message----- ]-> From: gopher [mailto:gophergoon(a)gmail.com] ]-> Sent: 13 April 2010 04:04 ]-> To: mathgroup(a)smc.vnet.net ]-> Subject: Bug in Sum? ]-> ]-> In the following, A and Expand[A] give different answers after when ]-> summed (a finite geometric series.) The result of summing A ]-> is clearly ]-> wrong, since it is independent of the parameters r and s. ]-> ]-> Abhishek ]-> ]-> In[44]:= A = x^(i - n) (x^(i - n) (1 - r x^n) - s); ]-> A == Expand[A] // Simplify ]-> ]-> Out[45]= True ]-> ]-> In[46]:= Sum[A, {i, 0, n - 1}] ]-> ]-> Out[46]= (x^(-2 n) (-1 + x^(2 n)))/(-1 + x^2) ]-> ]-> In[47]:= Sum[Expand[A], {i, 0, n - 1}] // FullSimplify ]-> ]-> Out[47]= -(( ]-> x^(-2 n) (-1 + x^n) (-1 + x^n (-1 + r + s + s x + r ]-> x^n)))/(-1 + x^2) ]-> ) ]-> ]->
|
Next
|
Last
Pages: 1 2 Prev: Using package functions in Manipulate/DynamicModule Next: Two dimensional Splines |