Prev: inconsistent synatx for FillingStyle and PlotStyle? or How to make vertical lines in ListPlot have diffenent colors?
Next: MathematicaMark7: slow core i7/xeon matrix multiplication
From: Ben Dundee on 10 Sep 2009 07:20 Interesting! If you evaluate using NIntegrate you get the correct answer: In[7]:= f=(x-1)^2*(y-1)^2*(z-1)^2; NIntegrate[f,{x,-1,1},{y,-1,1},{z,-1,1}] NIntegrate[Integrate[Integrate[f,{x,-1,1}],{y,-1,1}],{z,-1,1}] Out[8]= 18.963 Out[9]= 18.963
From: psycho_dad on 10 Sep 2009 07:20 Funny, I generalized the expression by replacing the exponent in z-1 with an arbitrary constant: f=(x-1)^2(y-1)^2 (z-1)^a; and then both integrations fail in v7: Integrate[f,{x,-1,1},{y,-1,1},{z,-1,1}] 0 Integrate[Integrate[Integrate[f,{x,-1,1}],{y,-1,1}], {z,-1,1},Assumptions->a>0] 0 while in v6 they both give: ((-1)^a 2^(7 + a))/(9 (1 + a)) for a->2 this gives 512/27 I would expect that tests like this should be done before a new version is released...
From: guerom00 on 11 Sep 2009 19:56 I stumbled on this one : In[59]:= f=Piecewise[{ {Sin[x]^4,-\[Pi]<=x<=-\[Pi]/2}, {Sin[x]^10,-\[Pi]/2<=x<=\[Pi]/2}, {Sin[x]^16,\[Pi]/2<x<=\[Pi]} }]; NIntegrate[f Sin[x],{x,-\[Pi],\[Pi]}] Integrate[f Sin[x],{x,-\[Pi],\[Pi]}] Out[60]= 0. Out[61]= -(25576/109395)
From: DrMajorBob on 12 Sep 2009 07:26 NIntegrate fails on the whole interval, but succeeds if we break it into two intervals: g[x_] = Piecewise[{{Sin[x]^4, -\[Pi] <= x <= -\[Pi]/2}, {Sin[x]^10, -\[Pi]/2 <= x <= \[Pi]/2}, {Sin[x]^16, \[Pi]/2 < x <= \[Pi]}}]; NIntegrate[g@x Sin[x], {x, -\[Pi], 0}] + NIntegrate[g@x Sin[x], {x, 0, Pi}] - Integrate[g@x Sin[x], {x, -Pi, Pi}] -4.59355*10^-14 Bobby On Fri, 11 Sep 2009 18:57:19 -0500, guerom00 <guerom00(a)gmail.com> wrote: > I stumbled on this one : > > In[59]:= f=Piecewise[{ > {Sin[x]^4,-\[Pi]<=x<=-\[Pi]/2}, > {Sin[x]^10,-\[Pi]/2<=x<=\[Pi]/2}, > {Sin[x]^16,\[Pi]/2<x<=\[Pi]} > }]; > NIntegrate[f Sin[x],{x,-\[Pi],\[Pi]}] > Integrate[f Sin[x],{x,-\[Pi],\[Pi]}] > > Out[60]= 0. > Out[61]= -(25576/109395) > -- DrMajorBob(a)yahoo.com
From: Alexey on 13 Sep 2009 08:00
On 9 Sen, 12:34, guerom00 <guero...(a)gmail.com> wrote: > Yeah, funny. > > In[12]:= f=(x-1)^2 (y-1)^2 (z-1)^2; > Integrate[f,{x,-1,1},{y,-1,1},{z,-1,1}] > NIntegrate[f,{x,-1,1},{y,-1,1},{z,-1,1}] > > Out[13]= 0 > > Out[14]= 18.962962945415 In Mathematica 5.2 the bug is absent: In[1]:= f=(x-1)^2 (y-1)^2 (z-1)^2; Integrate[f,{x,-1,1},{y,-1,1},{z,-1,1}]//N NIntegrate[f,{x,-1,1},{y,-1,1},{z,-1,1}] Out[2]= 18.963 Out[3]= 18.963 So, in Mathematica 7 some Integrate[]-functionality is broken. |