From: Mike on
George Herold <gherold(a)teachspin.com> wrote:

[...]

> Hi Mike, Would you mind telling me how I dump this into LT spice.
> I�m not a spice virgin.... but I am still a newlywed.
>
> Thanks,
>
> George H.

Hi George - here's how:

1. Select the listing with your mouse.
2. Press Ctrl-C to copy the selected block to the clipboard.
3. Open any plain ascii text editor such as NotePad or EditPad.
4. Paste the selected text into the word processor with Ctrl-V.
5. Use "Save As" to save the file to a suitable folder. Use the file
extension ".asc" to run it in LTspice.
6. Repeat if there is a plot file, using the ".plt" extension.

If you have installed LTspice and associated the ASC file extension, all
you need to do is select the file in MS Explorer and it will load the
file into LTspice.

If you have not associated the file extensions, then load LTspice and use
the Open File command to locate and run the file.

Please repost if you have any problems.

Mike
From: Mike on

==
Phil Hobbs <pcdhSpamMeSenseless(a)electrooptical.net> wrote:

[...]

> The Early effect causes problems at higher currents, because it
> adds a conductance that's more or less proportional to the emitter
> current.

> That makes a difference, especially if the base resistor is too
> big, so that the base current change causes an output voltage
> change.

> Lots of Spice models don't handle it well IME. Slower, bigger,
> higher voltage transistors have higher Early voltages. Big fat
> ceramics (10 uF) are good for the output cap.

> I've used MPSA14s to cut 50 mV of 10 kHz ripple down to a nanovolt
> or two in real circuits. I couldn't do a lot of what I do without
> cap multipliers.

> Cheers

> Phil Hobbs

Thanks, that new info makes a big difference. When you said to use a
BFC capacitor on the emitter, I thought you meant a big capacitor,
so I looked at electrolytics above 1000uF.

These have a series resonance somewhere around 100KHz, and it made
the C-E capacitance only affect the high side of the bathtub curve.
There was no capacitance ratio effect that you mentioned earlier.

However, a 10uF ceramic has a much higher series resonance
frequency, and this changes the entire picture. I'm including a
fairly long LTspice file that describes it. Here's a description of
the output signals:

Vout1 : This uses the Fairchild spice model for the MPSA14. It shows
that spice cannot model the conductance properly in a bjt series
pass element, as you stated.

Vout2 : Using the numbers from your previous posts, the attenuation
is 20*log(2e-9/50e-3) = -147.95 dB. Using a 10uF emitter capacitor,
the MPSA14 can be modeled as a simple 60 megohm resistor in parallel
with a 400 femtofarad capacitor. This produces a shelf at -146.95 dB
from about 10KHz to just over 1 MHz. The attenuation is the ratio of
the two capacitors, just as you said earlier.

Vout3 : Now that we have a more realistic model for the MPSA14, it
is useful to try it with a large electrolytic. Low ESR caps are now
very common. I used a Nic Components Corp. aluminum electrolytic
NRE-HL332M16V12.5x35F, 3300uf, 0.020 Ohm @ 100KHz, listed in page 3
of http://www.niccomp.com/Catalog/nrehl.pdf. This shows a dramatic
improvement of about 50 dB for frequencies below 10KHz. (Ignore the
-190dB at 6KHz:)

Vout4: The 10uF ceramic works well for the higher frequencies, but
it doesn't do much for frequencies below 10KHz. Here's the effect of
using a large electrolytic in parallel with the 10uF ceramic. There
is a huge reduction below 10KHz, and a significant reduction all the
way up to 300KHz.

So for the price of a plain electrolytic you can probably find in
your junkbox, you can get a major improvement in attenuation. This
might also apply to the reference filter.

Of course, as Joerg always recommends, add diodes to protect against
hard shorts.

Regards,

Mike

Here's the file. There might be prolems due to line wrap:

Version 4
SHEET 1 1140 1108
WIRE -256 -416 -272 -416
WIRE 16 -416 -176 -416
WIRE 112 -416 16 -416
WIRE 144 -416 112 -416
WIRE 384 -416 144 -416
WIRE 480 -416 384 -416
WIRE 576 -416 480 -416
WIRE 672 -416 576 -416
WIRE 768 -416 672 -416
WIRE 864 -416 768 -416
WIRE 16 -384 16 -416
WIRE 384 -352 384 -416
WIRE 576 -352 576 -416
WIRE 768 -352 768 -416
WIRE -48 -336 -112 -336
WIRE 144 -336 144 -416
WIRE 480 -336 480 -416
WIRE 672 -336 672 -416
WIRE 864 -336 864 -416
WIRE -272 -304 -272 -416
WIRE -112 -304 -112 -336
WIRE 32 -288 16 -288
WIRE 80 -288 32 -288
WIRE 32 -224 32 -288
WIRE 48 -224 32 -224
WIRE 144 -224 144 -240
WIRE 144 -224 128 -224
WIRE 240 -224 144 -224
WIRE 256 -224 240 -224
WIRE 384 -224 384 -272
WIRE 432 -224 384 -224
WIRE 480 -224 480 -272
WIRE 480 -224 432 -224
WIRE 576 -224 576 -272
WIRE 624 -224 576 -224
WIRE 672 -224 672 -272
WIRE 672 -224 624 -224
WIRE 768 -224 768 -272
WIRE 816 -224 768 -224
WIRE 864 -224 864 -272
WIRE 864 -224 816 -224
WIRE -272 -208 -272 -224
WIRE -112 -208 -112 -224
WIRE 256 -208 256 -224
WIRE 384 -208 384 -224
WIRE 576 -208 576 -224
WIRE 768 -208 768 -224
WIRE 864 -208 864 -224
WIRE 144 -160 144 -224
WIRE 256 -128 256 -144
WIRE 384 -128 384 -144
WIRE 576 -128 576 -144
WIRE 768 -128 768 -144
WIRE 864 -128 864 -144
WIRE 144 -64 144 -80
WIRE 256 -32 256 -48
WIRE 384 -32 384 -48
WIRE 576 -32 576 -48
WIRE 768 -32 768 -48
WIRE 864 -32 864 -48
WIRE 256 64 256 48
WIRE 384 64 384 48
WIRE 576 64 576 48
WIRE 768 64 768 48
WIRE 864 64 864 48
FLAG -112 -208 0
FLAG -272 -208 0
FLAG 144 -64 0
FLAG 112 -416 Vin
FLAG 240 -224 Vout1
FLAG 256 64 0
FLAG 432 -224 Vout2
FLAG 384 64 0
FLAG 624 -224 Vout3
FLAG 576 64 0
FLAG 816 -224 Vout4
FLAG 768 64 0
FLAG 864 64 0
SYMBOL npn 80 -336 R0
SYMATTR InstName Q1
SYMATTR Value q1model
SYMBOL voltage -272 -320 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V1
SYMATTR Value 15
SYMBOL voltage -112 -320 R0
WINDOW 123 0 0 Left 0
WINDOW 39 36 57 Left 0
SYMATTR SpiceLine Rser=10
SYMATTR InstName V2
SYMATTR Value 10
SYMBOL current 144 -160 R0
WINDOW 123 0 0 Left 0
WINDOW 39 0 0 Left 0
WINDOW 0 31 14 Left 0
WINDOW 3 27 60 Left 0
SYMATTR InstName I1
SYMATTR Value 1ma
SYMBOL voltage -160 -416 R90
WINDOW 0 49 39 VRight 0
WINDOW 123 -48 40 VRight 0
WINDOW 39 0 0 Left 0
SYMATTR InstName V3
SYMATTR Value2 AC 1
SYMATTR Value ""
SYMBOL npn -48 -384 R0
SYMATTR InstName Q2
SYMATTR Value q1model
SYMBOL res 368 -368 R0
SYMATTR InstName R4
SYMATTR Value 80e6
SYMBOL cap 240 -208 R0
SYMATTR InstName C1
SYMATTR Value 10�f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 240 -48 R0
SYMATTR InstName R2
SYMATTR Value 3m
SYMBOL ind 240 -144 R0
SYMATTR InstName L1
SYMATTR Value 2.5nh
SYMBOL cap 368 -208 R0
SYMATTR InstName C2
SYMATTR Value 10�f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 368 -48 R0
SYMATTR InstName R3
SYMATTR Value 3m
SYMBOL ind 368 -144 R0
SYMATTR InstName L2
SYMATTR Value 2.5nh
SYMBOL res 144 -240 R90
WINDOW 0 0 56 VBottom 0
WINDOW 3 32 56 VTop 0
SYMATTR InstName R1
SYMATTR Value 200e6
SYMBOL cap 464 -336 R0
SYMATTR InstName C3
SYMATTR Value 400f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 560 -368 R0
SYMATTR InstName R5
SYMATTR Value 80e6
SYMBOL cap 560 -208 R0
SYMATTR InstName C4
SYMATTR Value 3300�f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 560 -48 R0
SYMATTR InstName R6
SYMATTR Value 20m
SYMBOL ind 560 -144 R0
SYMATTR InstName L3
SYMATTR Value 10nh
SYMBOL cap 656 -336 R0
SYMATTR InstName C5
SYMATTR Value 400f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 752 -368 R0
SYMATTR InstName R7
SYMATTR Value 80e6
SYMBOL cap 752 -208 R0
SYMATTR InstName C6
SYMATTR Value 3300�f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 752 -48 R0
SYMATTR InstName R8
SYMATTR Value 20m
SYMBOL ind 752 -144 R0
SYMATTR InstName L4
SYMATTR Value 10nh
SYMBOL cap 848 -336 R0
SYMATTR InstName C7
SYMATTR Value 400f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL cap 848 -208 R0
SYMATTR InstName C8
SYMATTR Value 10�f
SYMATTR SpiceLine Rser=1u Lser=1n
SYMBOL res 848 -48 R0
SYMATTR InstName R9
SYMATTR Value 3m
SYMBOL ind 848 -144 R0
SYMATTR InstName L5
SYMATTR Value 2.5nh
TEXT 8 -512 Left 0 ;'MPSA14 Darlington vs passive models
TEXT 48 -472 Left 0 !.ac oct 100 1 4e6
TEXT -264 144 Left 0 !.MODEL Q1model NPN(IS=1.34E-14 BF=340 NF=1 VAF=
136.7 IKF=0.38 ISE=7.84E-14 NE=1.5 BR=0.657 NR=1 VAR=92 IKR=1.87\n+ ISC=
9.0E-13 NC=2.0 RB=86.610 RE=0.08 NK=0.9 RE=0.58 RC=0.25 EG=1.180 FC=0.5
CJE=1.19288E-11 VJE=1.12097\n+MJE=0.301248 CJC=1.25659E-11 VJC=0.70336
MJC=0.325457 XCJC=0.9 TF=1.27E-9 XTB=2.12 XTI=3)
TEXT 40 -376 Left 0 ;MPSA14
TEXT -264 64 Left 0 ;C4 :Nic Components Corp. NRE-HL332M16V12.5x35F,
\n3300uf, 0.020 Ohm @ 100KHz\nhttp://www.niccomp.com/Catalog/nrehl.pdf
RECTANGLE Normal 208 -176 -160 -400
From: Mike on
Sorry, the model statement is too long and it wraps. LTspice won't load.

I posted the zip file in abse under the title "MPSA14 Ripple Filter Model"

I checked and it works fine.

Mike
From: John Larkin on
On Mon, 24 May 2010 21:04:19 GMT, Mike <spam(a)me.not> wrote:

>Phil Hobbs <pcdhSpamMeSenseless(a)electrooptical.net> wrote:
>
>> On 5/24/2010 8:09 AM, Mike wrote:
>
>[...]
>
>> Like I said, it's basically C_CE/C_BFC. You pick a transistor with
>> reasonable characteristics at frequencies you care about, drive its
>> base from a really really filtered version of V_CC--with a resistor in
>> series to make sure it doesn't oscillate and doesn't blow up if the
>> input or output gets shorted--and put a BFC at the output. If the
>> transistor has 10 pF C_CB and the BFC is 100 uF, that's 140 dB,
>> provided you look after other stuff such as the Early voltage and the
>> ESR of the output cap. Generally if your application needs more than
>> 100 dB of ripple rejection, you have to be pretty careful.
>>
>> Cheers
>>
>> Phil Hobbs
>
>Is that spiceable? I made a simple circuit with a voltage source driving
>the base and a cap on the emitter. I tried various transistors such as
>2N2222 and 2N2369, and various ESR and ESL values for the cap.
>
>The capacitance had little effect on the attenuation floor, but mainly
>moved the low frequency corner. No reasonable combination of transistors
>or cap values got below -120dB. The base resistance had little effect.
>Here's the file if you'd like to show me how it should work:
>
>Version 4
>SHEET 1 1140 1108
>WIRE -304 -448 -384 -448
>WIRE -160 -448 -224 -448
>WIRE -128 -448 -160 -448
>WIRE -128 -400 -128 -448
>WIRE -192 -352 -256 -352
>WIRE -384 -320 -384 -448
>WIRE -256 -320 -256 -352
>WIRE -128 -288 -128 -304
>WIRE -32 -288 -128 -288
>WIRE 16 -288 -32 -288
>WIRE -128 -256 -128 -288
>WIRE -32 -256 -32 -288
>WIRE -384 -224 -384 -240
>WIRE -256 -224 -256 -240
>WIRE -32 -176 -32 -192
>WIRE -128 -160 -128 -176
>WIRE -32 -80 -32 -96
>WIRE -32 16 -32 0
>FLAG -256 -224 0
>FLAG -384 -224 0
>FLAG -128 -160 0
>FLAG -160 -448 Vin
>FLAG -32 -288 Vout
>FLAG -32 16 0
>SYMBOL npn -192 -400 R0
>SYMATTR InstName Q1
>SYMATTR Value 2N2369
>SYMBOL voltage -384 -336 R0
>WINDOW 123 0 0 Left 0
>WINDOW 39 0 0 Left 0
>SYMATTR InstName V1
>SYMATTR Value 15
>SYMBOL voltage -256 -336 R0
>WINDOW 123 0 0 Left 0
>WINDOW 39 24 38 Left 0
>SYMATTR SpiceLine Rser=1
>SYMATTR InstName V2
>SYMATTR Value 10
>SYMBOL current -128 -256 R0
>WINDOW 123 0 0 Left 0
>WINDOW 39 0 0 Left 0
>SYMATTR InstName I1
>SYMATTR Value 20ma
>SYMBOL voltage -208 -448 R90
>WINDOW 0 49 39 VRight 0
>WINDOW 123 -48 40 VRight 0
>WINDOW 39 0 0 Left 0
>SYMATTR InstName V3
>SYMATTR Value2 AC 1
>SYMATTR Value ""
>SYMBOL cap -48 -256 R0
>SYMATTR InstName C1
>SYMATTR Value 1000�f
>SYMATTR SpiceLine Rser=1u Lser=1n
>SYMBOL res -48 -96 R0
>SYMATTR InstName R1
>SYMATTR Value 100m
>SYMBOL ind -48 -192 R0
>SYMATTR InstName L1
>SYMATTR Value 10n
>TEXT -216 -536 Left 0 ;'BJT Ripple Filter
>TEXT -224 -504 Left 0 !.ac oct 100 1 1e7


I did about the same, similar results.

ftp://jjlarkin.lmi.net/C-multiplier.gif

The lf rejection was about 3000:1. The hf rolloff corner corresponds
to a 2 ohm Re and the 15u load cap. The load is only 14 mA, so Re is
relatively high.

My opamp circuit starts with the opamp's roughly 100 dB PSRR and then
hits a 15 ohm + 120 uF lowpass, about 88 Hz corner frequency. That RC
rolloff gets pretty far down before the opamp's PSRR starts to get
bad. And I don't lose the 0.7 volts (or twice that for a darlington)
which happens to matter in my immediate case.

Neither circuit is perfect. There's probably something really good
lurking out in circuit space.

John


From: George Herold on
On May 25, 10:54 am, Mike <s...(a)me.not> wrote:
> George Herold <gher...(a)teachspin.com> wrote:
>
> [...]
>
> > Hi Mike,  Would you mind telling me how I dump this into LT spice.
> > I’m not a spice virgin.... but I am still a newlywed.
>
> > Thanks,
>
> > George H.
>
> Hi George - here's how:
>
> 1. Select the listing with your mouse.
> 2. Press Ctrl-C to copy the selected block to the clipboard.
> 3. Open any plain ascii text editor such as NotePad or EditPad.
> 4. Paste the selected text into the word processor with Ctrl-V.
> 5. Use "Save As" to save the file to a suitable folder. Use the file
>    extension ".asc" to run it in LTspice.
> 6. Repeat if there is a plot file, using the ".plt" extension.
>
> If you have installed LTspice and associated the ASC file extension, all
> you need to do is select the file in MS Explorer and it will load the
> file into LTspice.
>
> If you have not associated the file extensions, then load LTspice and use
> the Open File command to locate and run the file.
>
> Please repost if you have any problems.
>
> Mike

Thanks Mike that was easy.... pretty soon I’ll be ready for the spice
‘Karma Sutra’.

George H.