From: Xaustein on
English:
As Wikipedia tells us in English in this article:

http://en.wikipedia.org/wiki/Lense% E2% 80% 93Thirring_precession

"The Difference between de Sitter precession and the Lense-Thirring
effect is the de Sitter effect That is Simply due to the Presence of a
central mass, Where The Lense-Thirring effect is due to the rotation
of the central mass. The total precession is Calculated by the de
Sitter precession Combining with the Lense-Thirring precession. "

The precession of "de Sitter" indicates that a static mass generates a
precession or shearing of spacetime.

The precession of "Lense-Thirring" indicates that a rotating mass
generates a precession or shearing of spacetime.

The curvature of "Albert Einstein" in the TRG, 1915 indicates that a
static mass generates a curvature of spacetime.

Would not it be more symmetrical than a rotating mass will also create
a curvature of spacetime?

Greetings.

Español:
Como nos indica Wikipedia en inglés en este artículo:

http://en.wikipedia.org/wiki/Lense%E2%80%93Thirring_precession

"The difference between de Sitter precession and the Lense-Thirring
effect is that the de Sitter effect is due simply to the presence of a
central mass, whereas the Lense-Thirring effect is due to the rotation
of the central mass. The total precession is calculated by combining
the de Sitter precession with the Lense-Thirring precession".

La precesión de "de Sitter" nos indica que una masa estática genera
una precesión o cizalladura del espaciotiempo.

La precesión de "Lense-Thirring" nos indica que una masa en rotación
genera una precesión o cizalladura del espaciotiempo.

La curvatura de "Albert Einstein" en la TRG de 1915 nos indica que una
masa estática genera una curvatura del espaciotiempo.

¿No sería más simétrico que una masa en rotación generara también una
curvatura del espaciotiempo?

Saludos.