Prev: musatov: divorced, failed writer, psychotic predator, unemployable.
Next: -- Packing unit circles in squares: new results
From: slawek on 25 Apr 2010 10:35 Uzytkownik "A N Niel" <anniel(a)nym.alias.net.invalid> napisal w wiadomosci grup dyskusyjnych:250420100551037516%anniel(a)nym.alias.net.invalid... > In article <4bd40edd$0$19181$65785112(a)news.neostrada.pl>, slawek > <slawek(a)host.pl> wrote: > >> I am looking for solutions of this equation: >> >> y'[t] = y[t] - a y[t] y[t-1] y[t-2] >> >> It would be assumed that y[t] =0 for t < 0 . >> >> TIA >> slawek >> > > then y'[t]=y[t] for 0 <= t < 2 and since y[0]=0 we get y[t]=0 > for 0 <= t <= 2 . Continue in this way to get y[t]=0 for all t. y[t] = 0 for t < 0, but y[0] > 0, therefore y[t] = y[0] Exp[t] for 0 <= t <= 2 Your "ladder method" is still suitable, but not so easy as seems to be. slawek
From: slawek on 25 Apr 2010 10:38 Uzytkownik "William Elliot" <marsh(a)rdrop.remove.com> napisal w wiadomosci grup dyskusyjnych:20100425035622.G21838(a)agora.rdrop.com... > On Sun, 25 Apr 2010, A N Niel wrote: >> <slawek(a)host.pl> wrote: >> >>> I am looking for solutions of this equation: >>> >>> y'[t] = y[t] - a y[t] y[t-1] y[t-2] >>> >>> It would be assumed that y[t] =0 for t < 0 . >> >> then y'[t]=y[t] for 0 <= t < 2 and since y[0]=0 we get y[t]=0 >> for 0 <= t <= 2 . Continue in this way to get y[t]=0 for all t. >> > How do you get that y(0) = 0? By an assumption. There is an arbitrary asumption that y[0] > 0 and that y[0] is a "small value".
From: slawek on 25 Apr 2010 10:43 Uzytkownik "A N Niel" <anniel(a)nym.alias.net.invalid> napisal w wiadomosci grup dyskusyjnych:250420100801543817%anniel(a)nym.alias.net.invalid... > In article <20100425035622.G21838(a)agora.rdrop.com>, William Elliot > <marsh(a)rdrop.remove.com> wrote: > >> On Sun, 25 Apr 2010, A N Niel wrote: >> > <slawek(a)host.pl> wrote: >> > >> >> I am looking for solutions of this equation: >> >> >> >> y'[t] = y[t] - a y[t] y[t-1] y[t-2] >> >> >> >> It would be assumed that y[t] =0 for t < 0 . >> > >> > then y'[t]=y[t] for 0 <= t < 2 and since y[0]=0 we get y[t]=0 >> > for 0 <= t <= 2 . Continue in this way to get y[t]=0 for all t. >> > >> How do you get that y(0) = 0? > > y differentiable => y continuous Not so simple. The equation "works" for t > 0. The time t = 0 is a "big bang" time - not covered by the model. A kind of an fluctuation, some small perturbance which start a grow up of y function. slawek
From: William Elliot on 26 Apr 2010 05:29 On Sun, 25 Apr 2010, slawek wrote: > Uzytkownik "A N Niel" >> <marsh(a)rdrop.remove.com> wrote: >> >>> On Sun, 25 Apr 2010, A N Niel wrote: >>> > <slawek(a)host.pl> wrote: >>> > >>> >> I am looking for solutions of this equation: >>> >> >>> >> y'[t] = y[t] - a y[t] y[t-1] y[t-2] >>> >> >>> >> It would be assumed that y[t] =0 for t < 0 . >>> > >>> > then y'[t]=y[t] for 0 <= t < 2 and since y[0]=0 we get y[t]=0 >>> > for 0 <= t <= 2 . Continue in this way to get y[t]=0 for all t. >>> > >>> How do you get that y(0) = 0? >> >> y differentiable => y continuous > > Not so simple. The equation "works" for t > 0. The time t = 0 is a "big bang" > time - not covered by the model. A kind of an fluctuation, some small > perturbance which start a grow up of y function. Ok, so 0 is not in the domain of y, that is, y(0) is undefined. Otherwise, you've only the trivial solution y(t) = 0, for all t, which is the big fizzle. See my other post to you about non-trivial solutions when 0 is excluded from the domain of y. > > slawek > > >
From: slawek on 26 Apr 2010 13:10
The equation y'[t] = y[t] - y[t] y[t-1] y[t-2] has the solutions: plots http://drop.io/8cnw583 or (in TEX) \left\{x\to \text{Function}\left[\{t\},\begin{cases} e^t & t<0 \\ e^{t+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-3+2 t} \alpha } & 0\leq t<1 \\ e^{-e^2+e^{2+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-5+2 t} \alpha }+t+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}} & 1\leq t<2 \\ e^{-e^2+e^{2-e^2+e^{2+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-7+2 t} \alpha }+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}}+t+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}} & 2\leq t<3 \\ e^{3-e^2+e^{2-e^2+e^{2+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}}+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}}+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}-\int_1^3 e^{-3-2 e^2-\frac{\alpha }{e}} \left(e^{3+2 e^2+\frac{\alpha }{e}}-e^{e^{2-e^2+e^{2+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-9+2 K[1]} \alpha }+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}}+e^{2+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-9+2 K[1]} \alpha }+\frac{\alpha }{e^3}+2 K[1]} \alpha \right) \, dK[1]+\int_1^t e^{-3-2 e^2-\frac{\alpha }{e}} \left(e^{3+2 e^2+\frac{\alpha }{e}}-e^{e^{2-e^2+e^{2+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-9+2 K[1]} \alpha }+\frac{\alpha }{2 e^3}-\frac{\alpha }{2 e}}+e^{2+\frac{\alpha }{2 e^3}-\frac{1}{2} e^{-9+2 K[1]} \alpha }+\frac{\alpha }{e^3}+2 K[1]} \alpha \right) \, dK[1]} & 3\leq t\leq 4 \\ \text{Indeterminate} & \text{True} \end{cases} \right]\right\} slawek |