From: tulip tulipov on 20 Jan 2010 14:03 How to compare the approximated solution with exact solution? Example: The IVP is: y'=2t-y, y(0)=-1 with N=10. Exact solution is y(t)=exp(-t)+2t-2. I found the approximate solution, but I have a problem to compare both (exact and approximate)? Here what I've done: a=0; b=1; y0=-1; N=10; fprintf('\n') disp(' Euler Method ') disp('_______________________________________________') disp('ti f(ti,yi) yi exact error') disp('_______________________________________________') fprintf('\n') h=(b-a)/N; y=y0; fprintf('%4.2f ----------- %12.6f %12.6f %4.2f\n',a,y,y,0) %prva redica od tabelata, dosega vnesenite pocetni vrednosti for i=1:N t=a+(i-1)*h; m=f(t,y); y=y+h*m; fprintf('%4.2f %12.6f %12.6f\n',t,m,y); end
|
Pages: 1 Prev: quiver plot on top of a trisurf Next: Problem in matlab IEE float |