From: Rob Johnson on
In article <20100628.181055(a)whim.org>,
Rob Johnson <rob(a)trash.whim.org> wrote:
>In article <e12316bc-8381-4045-9270-df3618e7d8e3(a)t10g2000yqg.googlegroups.com>,
>"Jan W. Coenen" <jan.w.coenen(a)googlemail.com> wrote:
>>id like to find out how to find out a numerical solution to the
>>following equation with mathematica:
>>
>>qpar/2\[LongEqual]1.96763*10^-8 T^4+(2.65932*10^10 E^(-99104.3 (1/
>>T-1/5823)))/Sqrt[T]
>>
>>It seems i am not able to fine a function or values T(qpar)
>
>I extended the precision in your formula to 20 places to get a bit
>more precision in the answer. If you know more precision to the
>constants in your formula, use it. If not, remove the "`20"s I
>added to your constants.
>
>qpar[T_] :=
> 2 (1.96763`20*10^-8 T^4 + (2.65932`20*10^10 E^(-99104.3`20 (1/T -
> 1/5823)))/Sqrt[T])
>
>
>iqpar[x_] := FindRoot[qpar[T] == x, {T, 1}, WorkingPrecision -> 20]

iqpar above returns a rule, to return the inverse value, try

iqpar[x_] :=
T /. FindRoot[qpar[T] == x, {T, 1}, WorkingPrecision -> 20]

Rob Johnson <rob(a)trash.whim.org>
take out the trash before replying
to view any ASCII art, display article in a monospaced font