From: Anthony on 17 Jun 2010 22:57 Hey folks, I'm trying to estimate an AR(4)-ARCH(3) model by minimizing the negative of the log-likelihood function. But my "optimal" coefficients explode and are wildly huge. I havn't included the constraint on the coefficients to ensure that the model is stationary as I am not sure how to...I think this might be the problem... Here's what I have written: MAIN BLOCK: % Estimate an AR(4) model with a constant by ordinary least squares p = 4; [arbetas,res] = ark(Data,p); % Engle (1982) test for autocorrelation in the residuals. % ARCH(3) test q = 3; % # of lags to use in ARCH test [archstat pval archbetas] = archk(res,q); %Estimate a AR(4)-ARCH(3) model: theta0 = [arbetas;archbetas]; %AR and ARCH coefficients used as initial estimates in the search for optimal coefficients Options = optimset; thetahat = fminsearch(@likelihood,theta0,Options,Data,p,q); **** So my thetahats explode here... ******** FUNCTIONS: ************************************************************* function [b r] = ark(y,k) % Purpose: estimates an AR(k) model with a constant using OLS of the form: % y = a0 + y(t-1) a1 + y(t-2) a2 +...+ y(t-k) ak + epsilon % Inputs: y = dependent variable vector % k = # of lags in the model (scalar) % Outputs: b = vector of coefficient estimates % r = vector of residuals % Error checking of inputs if nargin ~= 2 error('Incorrect number of inputs'); end if cols(y) > 1 error('y must be a vector'); end [nobs junk] = size(y); % Create matrix of lagged regressors of the form: % ones + xlag(t) + xlag(t-1) + xlag(t-2) + ... xlag(t-p) xlag = ones(nobs-k,1); for i =1:k xlag = [xlag y(k+1-i:end-i,1)]; end yp = y(k+1:end); %y vector that feeds the lags b = inv(xlag'*xlag)*xlag'*yp; % OLS coefficent estimates r = yp - xlag*b; end ************************************************************* function [archstat pval b] = archk(r,k) % Purpose: computes a test for ARCH(k) according to Engle (1982) % % Ho: no autoregressive conditional heterskedasticity present in the 'k' % lagged squared series of r. % Ha: ARCH is present in the squared series of r. % % Inputs: r = vector (usually regression residuals) % k = order of ARCH to be tested (scalar) % Outputs: archstat = ARCH(k) test statistic follows chi-squared under the % null hypothesis % archstat = T*R^2 ~ Chisquared with k dof % pval = tail probability % % Modeled after: arch.m by Kim Baum, Dept of Economics, Boston College % REFERENCES: % Engle, Robert (1982), "Autoregressive Conditional Heteroskedasticity with Estimates of % the Variance of United Kingdom Inflation", Econometrica, vol. 50, pp. % 987-1007 % Error checking of inputs if nargin ~= 2 error('Incorrect number of inputs'); end if cols(r) > 1 error('r must be a vector'); end [nobs junk] = size(r); r2 = r.*r; % Create matrix of lagged r^2 with a constant r2lag = ones(nobs-k,1); for i =1:k r2lag = [r2lag r2(k+1-i:end-i,1)]; end r2 = r2(k+1:end); b = inv(r2lag'*r2lag)*r2lag'*r2; % OLS coefficent estimates res = r2 - r2lag*b; r2m = r2 - mean(r2); s = res'*res; % sum of squared residuals R2num = s; % RSS R2denom = r2m'*r2m; % TSS R2 = 1 - R2num/R2denom; %R-squared = 1 - RSS/TSS archstat = length(r2)*R2; pval = 2*(1 - chi2cdf(abs(archstat),k)); end ************************************************************* function [LLF] = likelihood(theta,y,p,q) % % Purpose: Calculates the log-likelihood function of an AR(p)-ARCH(q) % yt = rho0 + rho1*y(t-1) + rho2*y(t-2) + ... + rhop*y(t-p) + ut % ht = alpha0 + alpha1*h(t-1) + ... + alphaq*h(t-q) % Inputs: y = dependent variable vector % p = # of lags of the AR portion (rho) % q = # of lags of the ARCH portion (alpha) % theta = vector of coefficient estimates % theta = [rho alpha]; % Outputs: LLF = the negative of the log-likelihood function value rho = theta(1:p+1); alpha = theta(p+2:end); nobs = length(y); yp = y(p+1:end); %feeding the lags % Matrix of lagged regressors for AR portion with constant xlag = ones(nobs-p,1); for i =1:p xlag = [xlag y(p+1-i:end-i,1)]; end res = yp - xlag*rho; %residuals res2 = res.*res; %residuals squared, used for estimation of ARCH portion %Build lagged squared residuals matrix for ARCH part plus a constant lagres2 = ones(nobs-p-q+1,1); %lose p+q+1 data points because using residuals for i=1:q lagres2 = [lagres2, res2(q+1-i:end-i+1,1)]; end h = lagres2*alpha; % m = max(p,q); % t = (p+q):nobs; % h = h(t); LLF = -0.5*sum(log(h(1:end-1))) - 0.5*sum((res2(q+1:end).^2)./h(1:end-1)); %-0.5ln(2pi) excluded as it includes no parameters and does not alter the %extrema of the function. end *************************************************************
|
Pages: 1 Prev: Unable to get "datetick('x','HHPM')" to work.. Next: Creating MathLAB Executable |