From: Akira Bergman on
On Feb 28, 11:49 am, Raymond Manzoni <raym...(a)free.fr> wrote:
> Akira Bergman a écrit :
>
>
>
>
>
> > Dirichlet Eta function has period two, as it separates odds and evens
> > of the Zeta function by assigning them different signs;
>
> > Eta(z) = Sum[((-1)^(n-1)) / n^z, n=1 to infinity]
>
> > It plays a direct role in extending the Zeta function to Re(z) < 1 and
> > exposing the non-trivial zeros.
>
> > What would happen if new Eta functions of period four are defined like
> > this?;
>
> > Etaf1 = 1 + i/2^z - 1/3^z - i/4^z + ...
> > Etaf2 = 1 - i/2^z - 1/3^z + i/4^z + ...
> > Etaf3 = 1 + i/2^z - i/3^z - 1/4^z + ...
> > Etaf4 = 1 - i/2^z + i/3^z - 1/4^z + ...
>
> > Where i^2 = -1, and the summations are taken on four different cycles
> > on the complex plane, starting from +1. One of them is the 4/4 rhythm
> > sign conductors use, and another is the popular cross sign. The other
> > two are opposite loops around the plane.
>
> > Has this been done before?
>
>    For Etaf1 and Etaf2 you may use directly the polylogarithm :
>    Li_z(x) = sum_{k=1}^oo x^k/k^z
>    <http://en.wikipedia.org/wiki/Polylogarithm>
>
>    Etaf1(z)= Li_z( i)/i = (2^(-z) Eta(z) + i Beta(z))/i
>    Etaf2(z)= Li_z(-i)/i = (2^(-z) Eta(z) - i Beta(z))/i
>
>    with Beta(z) the Dirichlet beta function :
>    Beta(z)= sum_{n=0}^oo (-1)^n/(2n+1)^z
>    <http://en.wikipedia.org/wiki/Dirichlet_beta_function>
>
>    The Clausen function could be of interest too :
>    <http://en.wikipedia.org/wiki/Clausen_function>
>
>    For Etaf3 and Etaf4 you may rewrite them with a little more work
> using for example (I think you may write them too as sum of
> polylogarithms...)
>    sum_{k=0}^oo 1/(4*k+1)^z = zeta(z, 1/4)/4^z
>    sum_{k=0}^oo 1/(4*k+2)^z = (2^z-1) zeta(z)/4^z
>    sum_{k=0}^oo 1/(4*k+3)^z = zeta(z, 3/4)/4^z
>    sum_{k=0}^oo 1/(4*k+4)^z = zeta(z)/4^z
>    (with zeta(z, q) the Hurwitz zeta function
> <http://en.wikipedia.org/wiki/Hurwitz_zeta_function>)
>
>    Hoping it helped,
>                 Raymond

Polylogarithm all the way. They add up to a form similar to the other
definition of Li;

sum_{n=1}^oo Li_z(e^(i*2*pi/2^n)) / e^(i*2*pi/2^n)

On Wikipedia the similar expression is;
http://en.wikipedia.org/wiki/Polylogarithm

Li_z+1(s) = integral[Li_z(t) dt/t; t=0 to s]