From: Fabian Irek on 2 Feb 2010 07:24 Hello, I am trying to estimate a GARCH-in-mean with a asymmetry effect similar to that of the GJR-GARCH Model using SAS. I generated some simulation data and my program (posted below) works well on that. But when I use the real data, I get the error message "The model was singular. Some estimates are marked 'Biased'". I have no convergence problem, so it seems that I hace a collinearity problem. If I remove the arch-in-mean term "sqrt(h)" from the mean equation, the program works well on the real data, too. So it could be that my data simply doesn't fit the arch-in-mean specification. But this is unsatisfactory since I would like (not) to reject the significance of that term. I would be pleased for any comments. I could post more information, if needed. Thanks! Fabian Irek proc model data = test ; parms arch0 .01 arch1 .02 garch1 .02 phi .1 gamma .01; y = intercept + gamma*sqrt(h) ; if zlag(resid.y) < 0 then h.y = arch0 + arch1*xlag(resid.y**2,mse.y) + garch1*xlag (h.y,mse.y) ; else h.y = arch0 + arch1*xlag(resid.y**2,mse.y) + garch1*xlag (h.y,mse.y) + phi*zlag(resid.y**2) ; /* fit the model */ fit y / method = marquardt fiml details normal ; run; quit; Approx Approx Parameter Estimate Std Err t Value Pr > |t| arch0 0.000076 0.000092 <------ Biased arch1 0.106107 0.0748 <------ Biased garch1 0.807528 0.0755 <------ Biased phi 0.130431 0.1231 <------ Biased gamma 0.275576 2.9179 <------ Biased intercept 0.00021 0 <------ Biased h 0.000045 0.000950 <------ Biased Collinearity Diagnostics look like this: Condition ------------------Proportion of Variation------------------ Number Eigenvalue Number arch0 arch1 garch1 1 3.963732 1.0000 0.0000 0.0000 0.0000 2 2.544008 1.2482 0.0000 0.0000 0.0000 3 0.357058 3.3318 0.0000 0.0000 0.0000 4 0.091002 6.5997 0.0000 0.0000 0.0000 5 0.036181 10.4668 0.0000 0.0000 0.0000 6 0.010930 19.0434 0.0000 0.0000 0.0000 7 1E-12 1990912 1.0000 1.0000 1.0000 -Proportion of Variation- phi gamma intercept h 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 1.0000 I tried several things to remove the collinearity but I am stuck now. Only removing the intercept in the mean equation works, but that is unsatisfactory, too. The input data (y) is serially uncorrelated. Any suggestions? The data I enter is a datastream market return (monthly).
|
Pages: 1 Prev: further question regarding transport files. Next: Compare adj-R2 |