From: Walter Roberson on
William wrote:
> angle = input('Enter angle of trajectory= '); %Angle
> V= input('Enter velocity= '); %Velocity
> p= input('Enter Position of elevation= '); %Position
> G= 9.8; %Gravity
> t=0:0.1:20; %# of Calculations
>
> %%
> h= t*V*cos(angle); %height
> f= p+t*V*sin(angle) - 1/2*G*t.^2; %flight
> plot(h,f,'-');
> set(gca,'xlim',[0,length(h)/2],'ylim',[0,(max(f)+5)]) %Graphical
> restrictions
> % note the +5 in max(f)+5 is only to grow the graph slightly, for later
> annotation % space.
>
> Just about any input you can imagine doesnt allow the x format to work
> correctly, but here are some.
>
> angle = 45
> velocity = 55
> position = 10
>
> or
>
> angle = 45
> velocity = 155
> position = 10

angle = 45
sin(angle)

is going to give the sine of 45 *radians*.
From: Alan B on
"Alan B" <monguin61REM(a)OVETHIS.yahoo.com> wrote in message <i2nc7m$5f7$1(a)fred.mathworks.com>...
> "William " <william.baxter(a)oit.edu> wrote in message <i2nblf$rj8$1(a)fred.mathworks.com>...
> > angle = input('Enter angle of trajectory= '); %Angle
> > V= input('Enter velocity= '); %Velocity
> > p= input('Enter Position of elevation= '); %Position
> > G= 9.8; %Gravity
> > t=0:0.1:20; %# of Calculations
> >
> > %%
> > h= t*V*cos(angle); %height
> > f= p+t*V*sin(angle) - 1/2*G*t.^2; %flight
> > plot(h,f,'-');
> > set(gca,'xlim',[0,length(h)/2],'ylim',[0,(max(f)+5)]) %Graphical restrictions
> >
> > % note the +5 in max(f)+5 is only to grow the graph slightly, for later annotation
> > % space.
> >
> > Just about any input you can imagine doesnt allow the x format to work correctly, but here are some...
>
> Maybe you should use max(h) WITHOUT dividing by 2?
>
> I don't know why you can't just use this very straightforward solution:
> set(gca,'xlim',[min(h), max(h)],'ylim',[min(f), max(f)]) %Graphical restrictions

Sorry, I misread the original question. Try this:

zeroind = find(f<0,1);
set(gca,'xlim',[min(h), h(zeroind)],'ylim',[f(zeroind), max(f)]) %Graphical restrictions
From: William on
angle = input('Enter angle of trajectory= '); %Angle
V= input('Enter velocity= '); %Velocity
p= input('Enter Position of elevation= '); %Position
G= 9.8; %Gravity
t=0:0.1:20; %# of Calculations

%%
h1= t*V*cos(angle); %height
f= p+t*V*sin(angle) - 1/2*G*t.^2; %flight
h2=t*(V+25)*cos(angle); %height component 2
h3=t*(V+50)*cos(angle);
h4=t*(V+75)*cos(angle);
plot(h1,f,'-');hold on;plot(h2,f,'-r');plot(h3,f,'-g');plot(h4,f,'-y');
set(gca,'xlim',[0, max(h4)],'ylim',[0, max(f)]) %Graphical restrictions

It seems this has issues when graphing angles other than 45. It will always return plots in the negative direction. is there a way to restrict this?
From: Walter Roberson on
William wrote:
> angle = input('Enter angle of trajectory= '); %Angle
> V= input('Enter velocity= '); %Velocity
> p= input('Enter Position of elevation= '); %Position
> G= 9.8; %Gravity
> t=0:0.1:20; %# of Calculations
>
> %%
> h1= t*V*cos(angle); %height
> f= p+t*V*sin(angle) - 1/2*G*t.^2; %flight
> h2=t*(V+25)*cos(angle); %height component 2
> h3=t*(V+50)*cos(angle);
> h4=t*(V+75)*cos(angle);
> plot(h1,f,'-');hold on;plot(h2,f,'-r');plot(h3,f,'-g');plot(h4,f,'-y');
> set(gca,'xlim',[0, max(h4)],'ylim',[0, max(f)]) %Graphical restrictions
>
> It seems this has issues when graphing angles other than 45. It will
> always return plots in the negative direction. is there a way to
> restrict this?

Have you considered using cosd() and sind() instead of sin() and cos() ?
From: William on
angle = input('Enter angle of trajectory= '); %Angle
V= input('Enter velocity= '); %Velocity
p= input('Enter Position of elevation= '); %Position
G= 9.8; %Gravity
t=0:0.1:20; %# of Calculations

%%
h1= t*V*cos(angle/180); %height
f= p+t*V*sin(angle/180) - 1/2*G*t.^2; %flight
plot(h1,f,'-');hold on; xlabel('Distance (m)'); ylabel('Height (m)');

.....Yes you are correct, in the same way dividing angle/180 works. However i still cannot restrict my y axis correctly. I do not want it to show negative values of y (or when the projectile would be below the surface).