From: ©2009 Martin Musatov. on
1. visit http://meami.org
2. search the term: 2 N-1 = [
3. click on the 1st hyperlink < the first hyperlink
3a. the 1st hyperlink reads: 'Factorial - Wikipedia, the free
encyclopedia'
3b. the first hyperlink < the first hyperlink ==
-
http://www.google.com/url?q=http://en.wikipedia.org/wiki/Factorial%23Alternative_definition&usg=AFQjCNFDywg2CDjiU1tNiYp0xuW23DRwTg&ei=ViKrSoywDZOusgPgnuiPBQ&sa=X&oi=section_link&resnum=1&ct=legacy
===
http://www.meami.org/?cx=000961116824240632825%3A5n3yth9xwbo&cof=FORID%3A9%3B+NB%3A1&ie=UTF-8&q=2+N-1+%3D+[&sa=Search#900
==== 1a. Jump to Alternative definition‎: n\mathrm{S}\!\!\!\!\! This
sequence of superfactorials starts: 1\mathrm{S}\!\!\!\!\! 2\mathrm{S}\!
\!\!\!\! 3\mathrm{S}\!\!\!\! ...
en.wikipedia.org/wiki/Factorial
=====Alternative definition=====
[[Clifford Pickover]] in his 1995 book ''Keys to Infinity'' used a new
notation, ''n$'', to define the superfactorial
:<math>n\mathrm{S}\!\!\!\!\!\;\,{!}\equiv \begin{matrix} \underbrace
{ n!^{{n!}^{{\cdot}^{{\cdot}^{{\cdot}^{n!}}}}}} \\ n! \end{matrix},
\,</math>
or as,
:<math>n\mathrm{S}\!\!\!\!\!\;\,{!}=n!^{(4)}n! \,</math>
where the <sup>(4)</sup> notation denotes the [[Tetration|hyper4]]
[[operator]], or using [[Knuth's up-arrow notation]],
:<math>n\mathrm{S}\!\!\!\!\!\;\,{!}=(n!)\uparrow\uparrow(n!). \,</
math>
This sequence of superfactorials starts:
:<math>1\mathrm{S}\!\!\!\!\!\;\,{!}=1 \,</math>
:<math>2\mathrm{S}\!\!\!\!\!\;\,{!}=2^2=4 \,</math>
:<math>3\mathrm{S}\!\!\!\!\!\;\,{!}=6\uparrow\uparrow6={^6}6=6^{6^{6^
{6^{6^6}}}}.</math>
Here, as is usual for compound [[exponentiation]], the grouping is
understood to be from right to left:
:<math>a^{b^c}=a^{(b^c)}.\,</math>

-doubleclick 'alternative definition' <1st hyperlink < 1st hyperlink @
http://www.meami.org/?cx=000961116824240632825%3A5n3yth9xwbo&cof=FORID%3A9%3B+NB%3A1&ie=UTF-8&q=2+N-1+%3D+[&sa=Search#900
+ == the reality before you in your browser after you have double -
clicked the text 'Alternative definition‎' for the first time at this
URL

©2009 Martin Musatov. Intellectual Property belongs to the poster.