From: leox on
On 21 çÒÄ, 05:29, achille <achille_...(a)yahoo.com.hk> wrote:
> On Dec 21, 5:21šam, leox <leonid...(a)gmail.com> wrote:
>
> > 1/((1-x)(1-y) (1-xy))=\sum_{i,j=0} min(i+1,j+1) x^i y^j
>
> Same trick, split the sum into two cases
> š š i <= j (introduce index l = 0..\infty : j = i+l )
> and j š< i (introduce index m = 1..\infty : i = j+m ) to get
>
> š \sum_{i=0} (i+1) (xy)^i \sum{l=0} y^l
> + \sum_{j=0} (j+1) (xy)^j \sum{m=1} x^m
>
> and simplify....

Thank you.
From: M. M i c h a e l M u s a t o v on
http://www.meami.org/?cx=000961116824240632825%3A5n3yth9xwbo&cof=FORID%3A9%3B+NB%3A1&ie=UTF-16&q=%3E+%9A+%5Csum_%7Bi%3D0%7D+(i%2B1)+(xy)%5Ei+%5Csum%7Bl%3D0%7D+y%5El+#1232
a(n) = (-1/2) Sum (-3)^i C(1/2, i) C(1/2, j); i+j=n+2, i >= 0, j >= 0.
a(n) = (3/2)^(n+2) * Sum_{k >= 1} 3^(-k) * Catalan(k-1) * binomial(k, n
+2-k) [Doslic et al.] ... G.f.: A(x)=(1-y+y^2)/(1-y)^2 where (1+x)(y^2-
y)+x=0; ...
www.research.att.com/~njas/sequences/A001006

1 2 3 4 5 6 7 8 9 10 Next

On Dec 21, 12:52 am, leox <leonid...(a)gmail.com> wrote:
> On 21 çÒÄ, 05:29, achille <achille_...(a)yahoo.com.hk> wrote:
>
> > On Dec 21, 5:21Å¡am, leox <leonid...(a)gmail.com> wrote:
>
> > > 1/((1-x)(1-y) (1-xy))=\sum_{i,j=0} min(i+1,j+1) x^i y^j
>
> > Same trick, split the sum into two cases
> > Å¡ Å¡ i <= j (introduce index l = 0..\infty : j = i+l )
> > and j Å¡< i (introduce index m = 1..\infty : i = j+m ) to get
>
> > Å¡ \sum_{i=0} (i+1) (xy)^i \sum{l=0} y^l
> > + \sum_{j=0} (j+1) (xy)^j \sum{m=1} x^m
>
> > and simplify....
>
> Thank you.

Results 1 - 10 for > Å¡ \sum_{i=0} (i+1) (xy)^i \sum{l=0} y^l.
(0.
20 seconds)

1.
Result for query "keyword(s)=frac author= title="
\sum_ k=0^ m_e-1(\ \frac k+\gamma_e m_e\,0)-(\ \frac k+\gamma_e
m_e\+1, .
..
..
$$(x,y)_z=\frac 1 2(d(z,x)+d(z,y)-d(x,y)).$$ The quantity $(x,y)_z$ .
..
..
Characterizations of Embeddable 3 x 3 Stochastic Matrices with a
Negative Eigenvalue .
..
..
\sum^\infty_ n=1 T^n_0 (I - T_0 T^*_0 )^ \frac 1 2 L; )^ \frac 1 2 L
W_n f \ .
..
..

nyjm.
albany.
edu:8000/cgi-bin/aglimpse/19/nyjm/Http/.
..
..
/j?.
..
..

2.
id:A000225 - OEIS Search Results
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191,
16383, 32767, .
..
..
..
a(n) = sum of previous terms + n = (Sum_(i=0.
..
..
n-1) a(i)) + n for n >= 1.
.
..
..
..
Y.
Puri and T.
Ward, Arithmetic and growth of periodic orbits, J.
Integer Seqs.
, Vol.
.
..
..
a(n) = n + sum(i=0, n-1, a(i)); a(0) = 0.
- Rick L.
Shepherd .
..
..

www.
research.
att.
com/~njas/sequences/A000225
3.
Result for query "keyword(s)=frac author= title="
$$\lim_ n \to \infty \frac 1 n\sum_ i=0^ n-1[h_1(f^i(x))] .
..
..
..
$$(x,y)_z=\frac 1 2(d(z,x)+d(z,y)-d(x,y)).$$ The quantity $(x,y)_z$;
$d_ \Cal M$, .
..
..
Characterizations of Embeddable 3 x 3 Stochastic Matrices with a
Negative Eigenvalue .
..
..
\sum^\infty_ n=1 T^n_0 (I - T_0 T^*_0 )^ \frac 1 2 L; )^ \frac 1 2 L
W_n f \ .
..
..

nyjm.
albany.
edu:8000/cgi-bin/aglimpse/19/nyjm/Http/.
..
..
/j?.
..
..

4.
id:A007318 - OEIS Search Results
C(n-3,k-1) counts the permutations in S_n which have zero
occurrences of the pattern 231 and one .
..
..
..
L.
Euler, On the expansion of the power of any polynomial (1+x
+x^2+x^3+x^4+etc)^n .
..
..
G.
f.
: 1/(1-y-xy)=Sum(C(n, k)x^k*y^n, n, k>=0); .
..
..
of (n+1), sum_[p(i)=k]_{i=1}^{P(n+1)} = sum running from i=1 to i=P(n
+1) but .
..
..

www.
research.
att.
com/~njas/sequences/A007318
5.
Result for query "keyword(s)=substack author= title="
.
..
..
\bl \qquad n_1 + \cdots +n_ k = m; \sum \limits_ \substack \bb \bl
\qquad n_1 + \cdots +n_ k = m .
..
..
E=\xi B\oplus\bigoplus_ \substack n\ge1\\; L^2(A,\Phi_ \iota_0)=A_ .
..
..
\deg(X)= \displaystyle \sum_ \substack i=1,\dots,n \\ j=0,1,2,3 .
..
..
h & \leq \frac \Sum_ \substack x \sim y \\x \in X, y \in S \setminus
X .
..
..

nyjm.
albany.
edu:8000/cgi-bin/aglimpse/19/nyjm/Http/.
..
..
/j?.
..
..
2001.
..
..

6.
id:A008277 - OEIS Search Results
[From Roger L.
Bagula (rlbagulatftn(AT)yahoo.
com), Jan 11 2009] .
..
..
..
Sum_{i=0.
..
k} (-1)^(k-i)*C(k, i)*i^n.
Bell number A000110(n) = sum(S(n, k)) k=1.
..
n, n>0.
.
..
..
(1/3!) = 15.
The sum of the complexions is 15+60+15=90=S2(6, 3).
.
..
..
Lag(n,x,m), the associated Laguerre polynomials of order m; and C
(x,y) = x!/[ y!
.
..
..

www.
research.
att.
com/~njas/sequences/A008277
7.
Result for query "keyword(s)=substack author= title="
.
..
..
\bar \delta_X(t)=\inf_ \|x\|=1\sup_ \dim X/Y<\infty\inf_ \substack y
\in Y\\ .
..
..
..
|\cl C^0|\mu(b_0) & = \sum_ b\in \cl C^0\sum_ \substack t\in \cl
C^1 .
..
..
|L|=q \sum _ \substack 1\leq j\leq p; \cal C_h(F^ \lambda _ _ J)=
\sum_ .
..
..
+ \sum_ \substack h \in F' \setminus F \\ y \in \nSeq[n+1] k_n s_n^2
h^ -1 x_h .
..
..

nyjm.
albany.
edu:8000/cgi-bin/aglimpse/19/nyjm/Http/.
..
..
/j?.
..
..

8.
id:A008292 - OEIS Search Results
L.
Carlitz et al.
, Permutations and sequences with repetions by number of .
..
..
..
T(i, n) = sum_{j=0}^{i} (-1)^j (n+1 combin j) (i-j+1)^n for n>=1,
i>=0.
.
..
..
Triangle T(n, k), n>0 and k>0, read by rows; given by [0, 1, 0, 2, 0,
3, 0, 4, 0, ... y!*(x-y)! ]. For x = 0, the equation gives sum
(j=0,...,n) E(n,j) * C(j,n) ...
www.research.att.com/~njas/sequences/A008292
9.
Result for query "keyword(s)=dfrac author= title="
... \p x_3\in C_b(R^3)$,; u_ tt+\Delta^2u_t+\sum\limits_ i=1^
3a_i(x)\dfrac \p \p x_i .... U(x,y)=\dfrac \partial U \partial n_x
(x,y)=0; \dfrac \partial \partial n_y D(\xi ... $(t\in\C-0).$ It is
the straight line $h=\dfrac c-1 24(1-k^2)$ if $k=l$ ... E_ 2n(q) =1-
\dfrac 4n B_ 2n\sum_ k\geq 1\sigma_ 2n-1(k)q^k ...
nyjm.albany.edu:8000/cgi-bin/aglimpse/19/nyjm/Http/.../j?...
10.
id:A001006 - OEIS Search Results
Michael Z. Spivey and Laura L. Steil, The k-Binomial Transforms
and the Hankel Transform, ...