From: JSH Breakthrough Math Otter on
Idiot.


From: Jesse F. Hughes on
JSH <jstevh(a)gmail.com> writes:

> On Jul 21, 9:37 pm, Tim Little <t...(a)little-possums.net> wrote:
>> On 2010-07-22, JSH <jst...(a)gmail.com> wrote:
>>
>> > One thing that often fascinates me about arguments about mathematics
>> > is, when it occurs to me that a poster has no interest whatsoever in
>> > what the correct mathematics actually is!!!
>>
>> Gee, how ironic.  I noticed you snipped out the actually relevant
>> mathematics to embark on your rant.  Here it is again:
>>
>>   When you count the primes less than K with residue 1 vs residue 2
>>   mod 3, the 2s are in front for almost all values of K.  Why is that
>>   if your claim of "no preference" was correct?
>
> Why can you have runs of 10 heads in a row when you flip a coin?
>
> What does that prove mathematically? Coin bias towards heads?

I wonder if the phrase "for almost all values of K" means anything.

--
What you want with a hen What you want with a woman
Won't cackle when she lays? when she won't do nothin' I say?
What you want with a hen -- Charlie Patton,
Won't cackle when she lays? "Banty Rooster Blues"

From: Arte Atem on

"JSH" <jstevh(a)gmail.com> wrote in message
news:a58c491b-da0e-4bf1-a4a1-b9bbb925ee94(a)m35g2000prn.googlegroups.com...
On Jul 21, 9:37 pm, Tim Little <t...(a)little-possums.net> wrote:
>> On 2010-07-22, JSH <jst...(a)gmail.com> wrote:
>>
>> > One thing that often fascinates me about arguments about mathematics
>> > is, when it occurs to me that a poster has no interest whatsoever in
>> > what the correct mathematics actually is!!!
>>
>> Gee, how ironic. I noticed you snipped out the actually relevant
>> mathematics to embark on your rant. Here it is again:
>>
>> When you count the primes less than K with residue 1 vs residue 2
>> mod 3, the 2s are in front for almost all values of K. Why is that
>> if your claim of "no preference" was correct?

>Why can you have runs of 10 heads in a row when you flip a coin?

why not? Mother nature is not excluding any types of sequences.

>What does that prove mathematically? Coin bias towards heads?

that flipping a coin is an independent trial.

> What *in mathematical language* are you actually claiming?

k^m = q mod N has multiple solutions because of use of mod function.


>With no preference the primes behave probabilistically

no they do not. probability is a human construct to understand numbers.
a prime is just a number, it does not even know it is prime.

is a prime in base 10 the same as a prime in base 3 ?


>with regard to
>residues modulo a lesser prime. That is the prime residue axiom.

an axiom is a guess, and your "prime residue axiom" fails.

>Search in ANY search engine: prime residue axiom

sure found this;


"JSH" <jstevh(a)gmail.com> wrote in message
news:5141d1da-1266-4345-80ff-94fd799b76e8(a)y7g2000prc.googlegroups.com...
> There is a lot of satisfaction with having my own axiom, which I had
> the honor of naming as I'm the discoverer, which is of course, the
> prime residue axiom,
>
> But who could actually find the prime
> residue axiom? I did.
>
> >
> I have my own axiom.
> You know it took me over 3 1/2 years to even put it out as an axiom?

How **cute** you found your own little baby axiom to take care of !




>Runs of any type of behavior are as boring as any supposed pattern in
>a random sequence.

your math gives everybody the runs.


>James Harris


From: Rotwang on
JSH wrote:
> On Jul 21, 9:37 pm, Tim Little <t...(a)little-possums.net> wrote:
>> On 2010-07-22, JSH <jst...(a)gmail.com> wrote:
>>
>>> One thing that often fascinates me about arguments about mathematics
>>> is, when it occurs to me that a poster has no interest whatsoever in
>>> what the correct mathematics actually is!!!
>> Gee, how ironic. I noticed you snipped out the actually relevant
>> mathematics to embark on your rant. Here it is again:
>>
>> When you count the primes less than K with residue 1 vs residue 2
>> mod 3, the 2s are in front for almost all values of K. Why is that
>> if your claim of "no preference" was correct?
>
> Why can you have runs of 10 heads in a row when you flip a coin?
>
> What does that prove mathematically? Coin bias towards heads?
>
>> What *in mathematical language* are you actually claiming?
>
> With no preference the primes behave probabilistically with regard to
> residues modulo a lesser prime. That is the prime residue axiom.
>
> Search in ANY search engine: prime residue axiom
>
> Runs of any type of behavior are as boring as any supposed pattern in
> a random sequence.

http://dilbert.com/strips/comic/2001-10-25/
From: Joshua Cranmer on
On 07/21/2010 11:49 PM, JSH wrote:
> <deleted>
>
> Yet 6 is NOT prime.

Ironically enough, the part you deleted was the part where I explained
why it is still significant. You state an assertion without any evidence
to lead one to believe it; I have provided evidence and a discussion
that admits reasonable doubt as to the validity of your assertion.

--
Beware of bugs in the above code; I have only proved it correct, not
tried it. -- Donald E. Knuth