Prev: Scientific Astronomer and Simulating Sunlight
Next: Help Improving this integral calculation / solution
From: sean on 5 Mar 2010 04:34 Hello Group, I can solve the following integro-differential equation using LaplaceTransform.(This one doesn't have unit step) In[17]:= LaplaceTransform[10 i[t] + 0.01 i'[t] + 1600\!\( \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(i[z] \ [DifferentialD]z\)\) ==5, t, s] %//Expand %/. LaplaceTransform[i[t],t,s]-> i[s] Solve[%, i[s]]/. i[0]-> 0//Flatten//ExpandAll//Factor Out[20]= {i[s]->500./((200.+s) (800.+s))} Using partial fractions, we find that the laplace transform i[s]. In[31]:= Solve[(200.`+s) (800.`+s)==0,s] i[s]==500.`/((200.`+s) (800.`+s))==a/(s+200)+b/(s+800) 500.==a (800.`+s)+b (200.`+s)//Expand {a s+b s==0,800 a+200 b==500}//Solve[#,{a,b}]& i[s]==a/(200+s)+b/(800+s)/.% InverseLaplaceTransform[%, s, t]/.InverseLaplaceTransform[i[s],s,t]- >i[t] Out[36]= {i[t]==5/6 E^(-800 t) (-1+E^(600 t))} Now if I add the step by defining u[t] := Piecewise[{{0, t < 0}, {1, 0 < t <= 1}}, {t, -\[Infinity], \ [Infinity]}] it's basically a 1 second pulse u[t] And try to solve the resulting equation, it doesn't seem to work. LaplaceTransform[10 i[t] + 0.01 i'[t] + 1600 \!\( \*SubsuperscriptBox[\(\[Integral]\), \(0\), \(t\)]\(i[ z] \[DifferentialD]z\)\) == 5 u[t], t, s] % // Expand % /. LaplaceTransform[i[t], t, s] -> i[s] Thank you all for any insights in advance. Sean |