From: Michal Adam on 16 Mar 2010 08:43 Hi, I am working on my master thesis, which is "License number plate identification using digital image processing". Now I am trying to do a second algorithm to detect license number plate. Since I started do it I have had a lot of problems which i can't solve. I am asking for a help or some suggestions that could help me. I found some potential areas but i do not know how to remove the areas which are for example large then license plate, etc. I have tried to use regionprops but the result is unsatisfying. Maybe someone would make a suggestion how to reduce the number of potential license plates. Sorry for my english and thanks for help. Here is my code : http://img709.imageshack.us/img709/1777/k0enar1.jpg I=imread('K0 ENAR1.jpg'); %baza{k} im1=rgb2gray(I); im1=medfilt2(im1,[3 3]); % BW = edge(im1,'canny'); Mhe = [-1 -1 -1; 0 0 0; 1 1 1]; % horizontal edge detection Mve = [-1 0 1; -1 0 1; -1 0 1]; % vertical edge detection hor = imfilter(im1,Mhe1); ver = imfilter(im1,Mve1); s_wynikowy = abs(ver) + abs(hor); [RR CC]=size(s_wynikowy); for i=1:RR for j=1:CC if (s_wynikowy(i,j)<100) % intensity of pixel which is below the thresold ... = 0 s_wynikowy(i,j)=0; end end end BW=im2bw(s_wynikowy,0.15); figure(3); imshow(s_wynikowy) [rr cc]=size(BW); % N=zeros(1,30); % for i=1:rr % for j=1:30:cc-30 % N=BW(i,j:j+30); % suma=sum(N); % remove the horizontal edge line which sum of % pixels is more then thresold % if (suma > 20) % BW(i,j:j+30)=0; % end % end % end % figure(3); imshow(BW); N=zeros(50,1); for i=1:cc for j=1:50:rr-50 N=BW(j:j+50,i); suma=sum(N); % here is the same - vertical edges if (suma > 20) BW(j:j+50,i)=0; end end end figure(4); imshow(BW) msk=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1; 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;]; dil=imdilate(BW, msk); figure(5); imshow(dil); se=here is a matrix of ones [13 52] I_opened = imopen(dil,se); figure(6), imshow(I_opened,[]) L = bwlabel(I_opened,8); mx=max(max(L)) for n=1:mx [r,c] = find(L==n); rc = [r c]; [sx sy]=size(rc); n1=zeros(rr,cc); for i=1:sx x1=rc(i,1); y1=rc(i,2); n1(x1,y1)=255; end % Storing the extracted image in an array end b_meas = regionprops(L, 'all'); numberOfBlobs = size(b_meas, 1); figure(7); imagesc(I); axis square; hold on; boundaries = bwboundaries(I_opened); for k = 1 : numberOfBlobs thisBoundary = boundaries{k}; plot(thisBoundary(:,2), thisBoundary(:,1), 'g', 'LineWidth', 2); end hold off; for k = 1 : numberOfBlobs % Loop through all blobs. blobArea = b_meas(k).Area; % Get area. blobPerimeter = b_meas(k).Perimeter; % Get perimeter. blobCentroid = b_meas(k).Centroid; % Get centroid. fprintf(1,' %18f %18f\n',blobArea,blobPerimeter,blobCentroid); end all_b_Areas = [b_meas.Area]; allowableArea = (all_b_Areas > 1800 & all_b_Areas < 4500); keeperIndexes = find(allowableArea); keeperBlobsImage = ismember(L, keeperIndexes); % Re-label with only the keeper blobs kept. labeledDimeImage = bwlabel(keeperBlobsImage, 8); % Label each blob so we can make measurements of it % Now we're done. We have a labeled image of blobs that meet our specified criteria. figure(8); imshow(labeledDimeImage, []); axis square; b_meas1 = regionprops(labeledDimeImage, 'all'); numberOfBlobs1 = size(b_meas1, 1); figure(9); imagesc(I); axis square; hold on; boundaries = bwboundaries(keeperBlobsImage); for k = 1 : numberOfBlobs1 thisBoundary1 = boundaries{k}; plot(thisBoundary1(:,2), thisBoundary1(:,1), 'g', 'LineWidth', 2); end hold off;
|
Pages: 1 Prev: A matrix of matrices Next: ode45 results and preallocation |