From: Hunter on 20 Dec 2009 07:22 Lisp developers are wanted for a project to build a Mathematica emulator using the Maxima computer algebra system. Mockmma uses wxMaxima to evaluate a small subset of commands in the syntax of Mathematica (tm), which is a trademark of Wolfram Research Incorporated (WRI). Mockmma is in no way associated with WRI and is based on code written by Richard Fateman in 1990 and compatibility functions written by John Lapeyre. To install Mockmma: unzip Mockmma.tar.gz (or checkout trunk/Mockmma from the Mockmma sourceforge project) into the directory share\mockmma under the Maxima source tree; type load("mockmma/mockmma.lisp"); and type :lisp (mockmma). You should see the prompt "In[1] :=". To run a test suite, enter batch("mockmma/rtest_mockmma.mac", 'test). You can load Mockmma.wxm by choosing File, Open from the wxMaxima menu. Below is a list of 200+ Mathematica (tm) commands which Mockmma correctly emulates. Any help in developing Mockmma is welcome. Mockmma is experimental. It has no error handling and may not work on all platforms. No warranty is expressed or implied. "PrimeQ[23] " "2+3" "3^7" "4!" "yy=5" "yy^2" "Sin[1.0]" "5+1.0" "2.3+5.63 " "g[x_]:=x^3" "g[2]" "Map[g, {1,2,3}]=={1,8,27}" "Sqrt[4]" "Sqrt[3.0]" "{1,4,9,16}[[3]]" "Cos[0]" "Sin[0]" "Cos[Pi]" "Sin[Pi]" "Sin[Pi/2]" "Cos[Pi/2]" "2>1" "2<1" "2>1" "1<2" "2<=1" "1>=2" "2>=2" "2<=2" "FactorInteger[24]=={{2, 3}, {3, 1}}" "Expand[(1+x)^2]==1+2*x+x^2" "Log[E]" "E==Exp[1]" "I*I " "D[Log[x],x]==1/x " "D[Sin[x],x]==Cos[x] " "D[Cos[x],x]==-Sin[x] " "Factor[x^2+2*x+1]==(x+1)^2 " "Integrate[x,x]==x^2 / 2" "Integrate[Sin[z]*z,z]== - z Cos[z] + Sin[z]" "Integrate[x,{x,0,1}]==1/2" "True && True " "True && False " "True || False " "False || False " "{a,b}.{c,d}==a*c + b * d " "{2,3}.{5,3}" "If[True,a,b]==a " "If[False,a,b]==b " "If[False,a,b]==b " "ArcSin[1]==Pi /2 " "Abs[1]" "Abs[-1]" "Round[1.1]" "Round[1.6]" "Mod[13,3]" "Mod[27,8]" "Max[27,8]" "Min[27,8]" "Sign[27]" "Sign[0]" "Sign[-23]" "Re[5+ 7 I]" "Im[5+ 7 I]" "Conjugate[5+ 7 I]==5 - 7 I " "Floor[12.5]" "Ceiling[12.5]" "GCD[12,18]" "LCM[12,18]" "KroneckerDelta[12,18]" "KroneckerDelta[a,a]" "Table[1,{3}]=={1, 1,1} " "Table[i^2,{i,1,10}]=={1, 4, 9, 16, 25, 36, 49, 64, 81, 100} " "Table[i^2,{i,10}]=={1, 4, 9, 16, 25, 36, 49, 64, 81, 100} " "Table[f[i], {i, 1, 3}]=={f[1],f[2],f[3]} ") "Module[{i=0},Table[i++,{10}]]=={1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ") "Table[10*i + j, {i, 4},{j,3}]==Out[2]:= {{11, 12, 13}, {21, 22, 23}, {31, 32, 33}, {41, 42, 43}}" "Table[100* i + 10* j + k, {i, 3}, {j, 2}, {k, 4}]== {{{111, 112, 113, 114}, {121, 122, 123, 124}}, {{211, 212, 213, 214}, {221, 222, 223, 224}}, {{311, 312, 313, 314}, {321, 322, 323, 324}}}" "Table[x^2, {x, {1, 4, 9, 16}}]=={1, 16, 81, 256}") "Table[j^i, {i, {1, 2, 4}}, {j, {1, 4, 9}}]=={{1, 4, 9}, {1, 16, 81}, {1, 256, 6561}} " "Take[{a,b,c,d,e,f},4]=={a,b,c,d}" "Take[{a,b,c,d,e,f},-3]=={d,e,f}" "Take[{a,b,c,d,e,f},{2,4}]=={b,c,d}" "Take[{a,b,c,d,e,f},{2,-2}]=={b,c,d,e}" "Take[{{11,12,13},{21,22,23},{31,32,33}},2]=={{11,12,13},{21,22,23}}" "Take[{{11,12,13},{21,22,23},{31,32,33}},3,2]=={{11, 12}, {21, 22}, {31, 32}}" "Take[{{11,12,13},{21,22,23},{31,32,33}},2,-1]=={{13}, {23}}" "Take[Partition[Range[11,55],5],{2,4},{3,5}]=={{18, 19, 20}, {23, 24, 25}, {28, 29, 30}}" "Partition[{a,b,c,d,e,f},2]=={{a, b}, {c, d}, {e, f}}" "Partition[{a,b,c,d,e,f},3,1]=={{a, b, c}, {c, d, e}}" "Fold[f,x,{a,b,c,d}]==f[f[f[f[x, a], b], c], d]" "Fold[Times,1,{a,b,c,d}]==a b c d " "Apply[f,{x}]==f[x]" "Apply[Plus,{x,y,z}]== x + y + z " "Apply[#1+#2&,{x,y}]==x+y " "Fold[ x * #1 + #2 &, 0, {a, b, c, d, e}]==e + x (d + x (c + x (b + a x)))" "Reverse[{a,b,c,d}]=={d, c, b, a}" "Fold[1/(#1 + #2)&, x, Reverse[{a, b, c, d}]]==1/(1/(1/(1/(x+d)+c)+b) +a)" "Fold[ 10*#1 + #2&, 0, {4, 5, 1, 6, 7, 8}]" "Fold[#2-#1&, 0, Reverse[{a, b, c, d, e}]]==a - b + c - d + e " "Fold[ {#2,#1}&, x, {a, b, c, d}]=={d, {c, {b, {a, x}}}}" "Fold[Apply[#2,{#1}]&, x, {a,b,c,d}]==d[c[b[a[x]]]]" "Fold[f[#]& , x, Range[5]]==f[f[f[f[f[x]]]]]" "Union[{1,2},{3,4}]=={1, 2, 3, 4}" "Join[{a,b,c},{x,y},{u,v,w}]=={a, b, c, x, y, u, v, w}" "Join[{{a, b}, {c, d}}, {{1, 2}, {3, 4}}]=={{a, b}, {c, d}, {1, 2}, {3, 4}}" "Union[{1, 2, 1, 3, 6, 2, 2}]=={1, 2, 3, 6}" "Union[{a, b, a, c}, {d, a, e, b}, {c, a}]=={a, b, c, d, e}" "Prepend[{a, b, c, d}, x]=={x, a, b, c, d}" "Append[{a, b, c, d}, x]=={a, b, c, d, x}" "Riffle[{a,b,c},{x,y,z}]=={a, x, b, y, c, z}" "Fold[Union[#1, #1 + #2]&, {0}, {1, 2, 2, 8}]=={0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13}" "FoldList[f,x,{a,b,c,d}]=={x, f[x, a], f[f[x, a], b], f[f[f[x, a], b], c], f[f[f[f[x, a], b], c], d]}" "FoldList[Plus,0,{a,b,c,d}]=={0, a, a + b, a + b + c, a + b + c + d}" "FoldList[#1^#2&,x,{a,b,c,d}]=={x, x^a , (x^a )^b , ((x^a )^b )^c , (((x^a )^b )^c )^d }" "FoldList[#1*#2&,x,{a,b,c,d}]=={x, a x, a b x, a b c x, a b c d x}" "FoldList[Times,1,Range[10]]=={1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800}" "FoldList[1/(#2 + #1)&, x, Reverse[{a, b, c}]]==Out[5]:= {x, (c + x) ^-1 , (b + (c + x)^-1 )^-1 , (a + (b + (c + x)^-1 )^-1 )^-1 }" "Nest[f,x,3]==f[f[f[x]]]" "Nest[(1 + #)^2& , 1, 3]==676" "Nest[(1 + #)^2& , x, 5]==(1 + (1 + (1 + (1 + (1 + x)^2 )^2 )^2 )^2 ) ^2" "Nest[Sqrt,100.0,4]==1.333521432163324" "Range[4]=={1, 2, 3, 4}" "Range[x,x+4]=={x, 1 + x, 2 + x, 3 + x, 4 + x}" "IntegerDigits[58127]=={5, 8, 1, 2, 7}" "IntegerDigits[58127,2]=={1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1}" "IntegerDigits[58127,16]=={14, 3, 0, 15}" "IntegerDigits[{6,7,2},2]=={{1, 1, 0}, {1, 1, 1}, {1, 0}}" "IntegerDigits[7,{2,3,4}]=={{1, 1, 1}, {2, 1}, {1, 3}}" "IntegerDigits[Range[0,7],2]=={{0}, {1}, {1, 0}, {1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}" "IntegerDigits[Range[0,7],2,3]=={{0, 0, 0}, {0, 0, 1}, {0, 1, 0}, {0, 1, 1}, {1, 0, 0}, {1, 0, 1}, {1, 1, 0}, {1, 1, 1}}" "FromDigits[{5, 1, 2, 8}]==5128" "FromDigits[{1, 0, 1, 1, 0, 1, 1}, 2]==91" "FromDigits[{a, b, c, d, e}, x]==e + d x + c x^2 + b x^3 + a x^4" "FromDigits[{7, 11, 0, 0, 0, 122}]==810122" "Chop[10^-20]==0" "Chop[a]==a " "Chop[ 1 + 10.^-20* I - 7*(a + 10.^-30* b)*I]==1 - 7 I a " "Chop[10^-17]==0" "Chop[-1]==-1" "Chop[-10.^-17]==0" "Chop[{1,10^-20}]=={1, 0}" "Chop[{10^-20,{1,10^-17}}]=={0, {1, 0}}" "Chop[1+I]==1+I " "Chop[1+10.^-20 I]==1 " "Chop[10^-20 +I]==I " "Dimensions[{{a, b, c}, {d, e, f}}]=={2, 3}" "Dimensions[f[f[x, y], f[a, b], f[s, t]]]=={3, 2}" "Dimensions[f[g[x, y], g[a, b], g[s, t]]]=={3, 2}" "Most[Range[10]]=={1, 2, 3, 4, 5, 6, 7, 8, 9}" "Dimensions[{{a, b, c}, {d, e, f}}]=={2, 3}" "Det[{{1,2,3},{4,5,6},{7,8,9}}]==0" "Transpose[{{1,2,3},{4,5,6},{7,8,9}}]=={{1, 4, 7}, {2, 5, 8}, {3, 6, 9}}" "Det[ {{a,b},{c,d}}]== -(1 b c) + a d " "Tr[{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}]==15" "MatrixRank[{{1,2,3},{4,5,6},{7,8,9}}]==2" "MatrixRank[{{a,b},{2*a,2*b}}]==1" "MatrixRank[{{1,I},{I,-1}}]==1" "Eigenvalues[ { {1,0,0}, {0,1,0}, {0,0,1}}]== {1, 1, 1}" "DiagonalMatrix[{a,b,c}]=={{a, 0, 0}, {0, b, 0}, {0, 0, c}}" "DiagonalMatrix[{a,b,c},1]=={{0, a, 0, 0}, {0, 0, b, 0}, {0, 0, 0, c}, {0, 0, 0, 0}}" "DiagonalMatrix[{a,b,c},-1]=={{0, 0, 0, 0}, {a, 0, 0, 0}, {0, b, 0, 0}, {0, 0, c, 0}}" "DiagonalMatrix[{a,b,c},2]=={{0, 0, a, 0, 0}, {0, 0, 0, b, 0}, {0, 0, 0, 0, c}, {0, 0, 0, 0, 0}, {0, 0, 0, 0, 0}}" "Nest[Times,2,10]==2" "Table[f[i], {i, 10, -5, -2}]=={f[10], f[8], f[6], f[4], f[2], f[0], f [-2], f[-4]}" "Dimensions[Table[100* i + 10* j + k, {i, 3}, {j, 2}, {k, 4}]]== {3, 2, 4}" "Partition[{1,2,3,4,5,6,7,8,9,10},2]=={{1, 2}, {3, 4}, {5, 6}, {7, 8}, {9, 10}}" "Partition[{1,2,3,4,5,6,7,8,9,10},2,1]=={{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}" "Range[10,3]=={}" "Range[3,10,2]== {3, 5, 7, 9}" "Range[n,x+4]==Range[n, 4 + x]" "Range[10,3,-1]=={10, 9, 8, 7, 6, 5, 4, 3}" "Range[x,x+4]=={x, 1 + x, 2 + x, 3 + x, 4 + x}" "Range[x+4,x]=={}" "Range[x+4,x,-1]=={4 + x, 3 + x, 2 + x, 1 + x, x}" "IntegerDigits[0]=={0}" "Union[{a,b,c}]=={a, b, c}" "Union[g[a,b,c],g[c,d,e]]==g[a, b, c, d, e]" "Intersection[g[a,b,c],g[c,d,e]]==g[c]" "Subsets[{a,b,c,d}]=={{},{a}, {a, b}, {a, b, c}, {a, b, c, d}, {a, b, d}, {a, c}, {a, c, d}, {a, d}, {b}, {b, c}, {b, c, d}, {b, d}, {c}, {c, d}, {d}}" "Subsets[f[a,b,c,d]]==Out[12]:= {f[],f[a], f[a, b], f[a, b, c], f[a, b, c, d], f[a, b, d], f[a, c], f[a, c, d], f[a, d], f[b], f[b, c], f [b, c, d], f[b, d], f[c], f[c, d], f[d]}" "AtomQ[x]==True " "AtomQ[123456]==True " "AtomQ[1/10]==True " "AtomQ[3+I]==True " "Nest[h,x,3]==h[h[h[x]]] " "NestList[h,x,3]=={h[x], h[h[x]], h[h[h[x]]]} " "Fold[h,x,{a,b,c}]==h[h[h[x, a], b], c] " "FoldList[h,x,{a,b,c}]=={x, h[x, a], h[h[x, a], b], h[h[h[x, a], b], c]} " "Length[{a,b,c,d}]==4" "Length[a+b+c+d]==4" "Length[f[g[x,y],z]]==2" "Length[x]==0" "Length[123456]==0" "Length[3+I]==0" "Length[1/10]==0" "Length[{{a,b,c},{d,e,f}}]==2" "Length[IntegerDigits[1000!]]==2568" "Csc[Pi/2]==1" "Cot[1.0]==0.64209261593433065" "ArcCosh[2.0]==1.3169578969248166" "Module[{x=5},x]" "i=7" "i++ " "i-- " "PermutationQ[e_List] := (Sort[e] === Range[Length[e]])" "PermutationQ[{3,2,1}] " "PermutationQ[{3,2,2}] " "(p={2,3,4,5,1} "Select[Range[20], PrimeQ[#]&]=={2, 3, 5, 7, 11, 13, 17, 19} " "BesselJ[2,0.2]==0.004983354152783565" "BesselY[2,0.2]==-32.15714455874636" "BesselI[2,0.2]==0.0050166875138946783" "BesselK[2,0.2]==49.51242928773285" "Gamma[0.2]==4.5908437119988044" "Plot[x^2,{x,-5,5}] " "Plot3D[x^2+y^2,{x,-5,5},{y,-5,5}] " "ParametricPlot[{Cos[t],Sin[t]},{t,0, 2 Pi}]" "ListPlot[Table[{Cos[t],Sin[t]},{t,0,6.28,0.1}]]" "ContourPlot[ Exp[-(x^2 + 3 y^2)], {x, -2, 2}, {y, -2, 2} ]" "Erf[1.0]" "Erfc[1.0]" "LaplaceTransform[t,t,s]==1/s^2" "InverseLaplaceTransform[1/s^2,s,t]==t " "UnitStep[0.00001]" "UnitStep[0]" "Inverse[{{1,2},{3,4}}]=={{-2, 1}, {3/2, -1/2}}" "Eigenvalues[{{1,2},{2,1}}]=={3, -1}" "PartitionsP[1000]==24061467864032622473692149727991" "LegendreQ[1,3]==1/2 (-2 +3 Log[-2])"
|
Pages: 1 Prev: check for non empty string Next: Is my function set-property-in-list any good |