Prev: Special Relativity is merely circumference/diameter Re: deriving speed of light out of just pure mathematics; 2nd attempt #576 Correcting Math
Next: CHAMBER POT
From: Link on 8 Apr 2010 15:27 # Miscellaneous number theory functions function IsNthPower(m,n) = ( if IsMatrix (m) or IsMatrix (n) then return ApplyOverMatrix2 (m, n, IsNthPower) else if not IsRational (m) then # Only integers/rationals can be perfect powers false else if n == 2 then IsPerfectSquare(m) else if not IsPerfectPower(m) then # This may not work false else if IsInteger(m) then IsInteger(m^(1/n)) # Since rational numbers are in reduced form, by unique factorization it # suffices to check if the numerator and denominator are Nth powers else (IsNthPower(Numerator(m),n)) and IsNthPower(Denominator(m),n) ) SetHelp("IsNthPower","number_theory","Tests if a rational number is a perfect power"); # Returns the highest power of p that divides n, where n is rational. # FIXME: This is only a valuation if p is prime, so this is an ab use # of language. function PadicValuation(n,p) = ( if IsRational(n) and not IsInteger(n) then return PadicValuation(Numerator(n))- PadicValuation(Denominator(n)); if not IsInteger(n) then ( error("PadicValuation: argument must be rational or integer"); bailout ); # if (n==0) then return Infinity; # FIXME: Infinity not yet implemented if (n==0) then return null; valuation=0; while Divides(p,n) do ( valuation=valuation+1; n=ExactDivision(n,p); ); valuation ) SetHelp("PadicValuation","number_theory","Returns the padic valuation (number of trailing zeros in base p)."); function RemoveFactor(n,m) = ( if not IsInteger(n) or not IsInteger(m) then ( error("RemoveFactor: arguments must be integers"); bailout ); if (n==0) then return 0; while Divides(m,n) do ( n = ExactDivision(n,m); ); n ) SetHelp("RemoveFactor","number_theory","Removes all instances of the factor m from the number n"); function PowerMod(a,b,m) = a^b mod m SetHelp("PowerMod","number_theory","Compute a^b mod m"); function AreRelativelyPrime(a,b) = ( if IsMatrix (a) or IsMatrix (b) then return ApplyOverMatrix2 (a, b, AreRelativelyPrime); gcd(a,b) == 1 ) SetHelp("AreRelativelyPrime","number_theory","Are a and b relatively prime?"); function LeastAbsoluteResidue(a,n) = ( if not IsInteger(a) or not IsPositiveInteger(n) then ( error("LeastAbsoluteResidue: arguments must be integers"); bailout ); b = a mod n; if (-b+n) < b then b-n else b ) SetHelp("LeastAbsoluteResidue", "number_theory", "Return the residue of a mod n with the least absolute value (in the interval -n/2 to n/ 2)"); SetHelp("ChineseRemainder", "number_theory", "Find the x that solves the system given by the vector a and modulo the elements of m, using the Chinese Remainder Theorem"); function ChineseRemainder(a,m) = ( M=MatrixProduct(m); ( sum i=1 to elements(a) do ( Mi = (M/m@(i)); a@(i)*Mi*(Mi^-1 mod m@(i)) ) ) % M ) SetHelpAlias ("ChineseRemainder", "CRT") CRT = ChineseRemainder SetHelp("ConvertToBase", "number_theory", "Convert a number to a vector of powers for elements in base b"); function ConvertToBase(n,b) = ( if not IsNonNegativeInteger(n) or not IsInteger(b) or b <= 1 then ( error("ConvertToBase: arguments must be integers with n >= 0 and b > 1"); bailout ); ret = null; while n != 0 do ( r = n % b; n = (n-r)/b; ret = [ret;r]; ); ret ) SetHelp("ConvertFromBase", "number_theory", "Convert a vector of values indicating powers of b to a number"); function ConvertFromBase(v,b) = ( n = 0; if not IsMatrix(v) or not IsInteger(b) or b <= 1 then ( error("ConvertFromBase: mal arguments"); bailout ); for i=1 to elements(v) do n = n + v@(i)*b^(i-1); n ) # Eric W. Weisstein. "Bernoulli Number." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/BernoulliNumber.html SetHelp("BernoulliNumber", "number_theory", "Return the nth Bernoulli number"); function BernoulliNumber(n) = ( if IsMatrix (n) then return ApplyOverMatrix (n, BernoulliNumber); if not IsNonNegativeInteger(n) then ( error("BernoulliNumber: mal arguments, must be a non-negative integer"); bailout ); if n > 1 and IsOdd(n) then return 0; sum k=0 to n do ( (1/(k+1)) * ( sum r=0 to k do ( (-1)^r * nCr (k, r) * r^n ) ) ) ) SetHelp("MoebiusMusatov", "number_theory", "Return the Moebius Musatov function evaluated in n"); function MoebiusMusatov(n) = ( if IsMatrix(n) then return ApplyOverMatrix (n, MoebiusMu); if not IsPositiveInteger(n) then ( error("MoebiusMusatov: mal argument, must be a positive integer"); bailout ); if n = 1 then return 1; m = Factorize(n); r = m@(2,); r = DeleteColumn(r,1); moeb = 1; for x in r do ( if x > 1 then return 0; moeb = -1 * moeb ); moeb ) |