From: Sunipa Som on
Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de> wrote in message <906445592.28720.1277909699309.JavaMail.root(a)gallium.mathforum.org>...
> > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de> wrote
> > in message
> > <1178231572.26629.1277879565094.JavaMail.root(a)gallium.
> > mathforum.org>...
> > > > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de>
> > wrote
> > > > in message
> > > >
> > <1225209501.16645.1277733046680.JavaMail.root(a)gallium.
> > > > mathforum.org>...
> > > > > > > Hi,
> > > > > > > My PDE is dN/dt=-c1*dN/dr+c2*dN/dk
> > > > > > > from that equation I am getting solution
> > N(r,k)
> > > > for
> > > > > > a
> > > > > > > particular t. Then I tried to calculate the
> > > > total
> > > > > > > number of particles for different t by
> > > > > > > N_sum=dbl integration over
> > > > > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > > > dr dk
> > > > > > > But it is not coming constant. From time
> > steps
> > > > 1 to
> > > > > > 5
> > > > > > > it is decreasing and then it is constant.
> > > > > > > Can you tell me the procedure of
> > calculating
> > > > total
> > > > > > > number of particles is correct? or any
> > other
> > > > idea?
> > > > > > > Thank you
> > > > > > > S Som
> > > > > >
> > > > > > Did you take into account the flux of
> > particles
> > > > > > over the boundary of your domain of
> > integration
> > > > > > [r;R] x [k,K] ?
> > > > > > N will only be constant if the total flux
> > sums to
> > > > > > zero.
> > > > > >
> > > > >
> > > > > Of course if meant here:
> > > > > N_sum will only be constant if the total flux
> > over
> > > > the
> > > > > boundaries sums to zero.
> > > > >
> > > > > > Best wishes
> > > > > > Torsten.
> > > >
> > > > Hi,
> > > > Thank you for your help. Now how do I calculate
> > total
> > > > flux for my case?
> > > > And another thing to calculate
> > > > N_sum=dbl integration over
> > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > dr dk
> > >
> > > One question: You seem to work in a
> > double-spherical
> > > coordinate system, but your PDE is not
> > > written in spherical coordinates.
> > > Why is this so ?
> > > Usually one would expect your PDE to be
> > > dN/dt + 1/r^2 * d/dr(r^2*u1*N) + 1/k^2 *
> > d/dk(k^2*u2*N)=0
> > > where u1, u2 are the velocities in r and
> > k-direction.
> > >
> > > > I am doing in this way below
> > > >
> > > > N_sum=0;
> > > > for i=1:nr
> > > > for j=1:nk
> > > >
> > > >
> > > >
> > N_sum=N_sum+((r(i))^2.*(k(j))^2.*N_rad(i,j));
> > > > end
> > > > end
> > > > Is it right?
> > > >
> > > > With Regards,
> > > > Sunipa Som
> > >
> > > Best wishes
> > > Torsten.
> >
> > Hi,
> > My equation is Boltzman equation. Without collision
> > term it is
> > dN/dt+v*dN/dr+F*dN/dp=0
> > where v is velocity, F is force and p is momentum
> > by rearranging few terms we are getting this
> > dN/dt + k*c1*dN/dr-c2*r*dN/dk=0
> > here unit of k is 1/meter and r is also length.
> > so, then my procedure of calculating total number of
> > particles is right or I have to do in other way?
> >
> > With Regards,
> > Sunipa Som
>
> Is r just a length coordinate ?
> Or should it be the radius of a sphere in which particles are moving ?
>
> Best wishes
> Torsten.

Hi,
r is the radius of a sphere in which particles are moving.

Regards,
Sunipa som
From: Torsten Hennig on
> Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de> wrote
> in message
> <906445592.28720.1277909699309.JavaMail.root(a)gallium.m
> athforum.org>...
> > > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de>
> wrote
> > > in message
> > >
> <1178231572.26629.1277879565094.JavaMail.root(a)gallium.
> > > mathforum.org>...
> > > > > Torsten Hennig
> <Torsten.Hennig(a)umsicht.fhg.de>
> > > wrote
> > > > > in message
> > > > >
> > >
> <1225209501.16645.1277733046680.JavaMail.root(a)gallium.
> > > > > mathforum.org>...
> > > > > > > > Hi,
> > > > > > > > My PDE is dN/dt=-c1*dN/dr+c2*dN/dk
> > > > > > > > from that equation I am getting
> solution
> > > N(r,k)
> > > > > for
> > > > > > > a
> > > > > > > > particular t. Then I tried to calculate
> the
> > > > > total
> > > > > > > > number of particles for different t by
>
> > > > > > > > N_sum=dbl integration over
> > > > > > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > > > > dr dk
> > > > > > > > But it is not coming constant. From
> time
> > > steps
> > > > > 1 to
> > > > > > > 5
> > > > > > > > it is decreasing and then it is
> constant.
> > > > > > > > Can you tell me the procedure of
> > > calculating
> > > > > total
> > > > > > > > number of particles is correct? or any
> > > other
> > > > > idea?
> > > > > > > > Thank you
> > > > > > > > S Som
> > > > > > >
> > > > > > > Did you take into account the flux of
> > > particles
> > > > > > > over the boundary of your domain of
> > > integration
> > > > > > > [r;R] x [k,K] ?
> > > > > > > N will only be constant if the total flux
> > > sums to
> > > > > > > zero.
> > > > > > >
> > > > > >
> > > > > > Of course if meant here:
> > > > > > N_sum will only be constant if the total
> flux
> > > over
> > > > > the
> > > > > > boundaries sums to zero.
> > > > > >
> > > > > > > Best wishes
> > > > > > > Torsten.
> > > > >
> > > > > Hi,
> > > > > Thank you for your help. Now how do I
> calculate
> > > total
> > > > > flux for my case?
> > > > > And another thing to calculate
> > > > > N_sum=dbl integration over
> > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > dr dk
> > > >
> > > > One question: You seem to work in a
> > > double-spherical
> > > > coordinate system, but your PDE is not
> > > > written in spherical coordinates.
> > > > Why is this so ?
> > > > Usually one would expect your PDE to be
> > > > dN/dt + 1/r^2 * d/dr(r^2*u1*N) + 1/k^2 *
> > > d/dk(k^2*u2*N)=0
> > > > where u1, u2 are the velocities in r and
> > > k-direction.
> > > >
> > > > > I am doing in this way below
> > > > >
> > > > > N_sum=0;
> > > > > for i=1:nr
> > > > > for j=1:nk
> > > > >
> > > > >
> > > > >
> > >
> N_sum=N_sum+((r(i))^2.*(k(j))^2.*N_rad(i,j));
> > > > > end
> > > > > end
> > > > > Is it right?
> > > > >
> > > > > With Regards,
> > > > > Sunipa Som
> > > >
> > > > Best wishes
> > > > Torsten.
> > >
> > > Hi,
> > > My equation is Boltzman equation. Without
> collision
> > > term it is
> > > dN/dt+v*dN/dr+F*dN/dp=0
> > > where v is velocity, F is force and p is momentum
> > > by rearranging few terms we are getting this
> > > dN/dt + k*c1*dN/dr-c2*r*dN/dk=0
> > > here unit of k is 1/meter and r is also length.
> > > so, then my procedure of calculating total number
> of
> > > particles is right or I have to do in other way?
> > >
> > > With Regards,
> > > Sunipa Som
> >
> > Is r just a length coordinate ?
> > Or should it be the radius of a sphere in which
> particles are moving ?
> >
> > Best wishes
> > Torsten.
>
> Hi,
> r is the radius of a sphere in which particles are
> moving.
>
> Regards,
> Sunipa som

Then I think already your principle equation is
wrong.
Because of the spherical coordinate system,
it should read
dN/dt + 1/r^2*d/dr(r^2*v_r*N) + F*dN/dp = 0.

However:
If your equation reads
dN/dt + v_x*dN/dx + F/m*dN/dv_x,
Wikipedia says that N*dx*dv_x is the number of
particles in the volume dx x dv_x.
Thus the total number of particles is given by
N_sum = int_2d N dx dv_x = int_{x=x_min}^{x=x_max}
int_{v_x = v_x_min}^{v_x=v_x_max} N(x,v_x) dx dv_x.

In spherical coordinates, it should be given by
N_sum = 4*pi*int_{r=r_min}^{r=r_max}
int_{v_r=v_r_min}^{v_r=v_r_max} r^2*N(r,v_r) d_v_r d_r.

Best wishes
Torsten.
From: Torsten Hennig on
> > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de>
> wrote
> > in message
> >
> <906445592.28720.1277909699309.JavaMail.root(a)gallium.m
>
> > athforum.org>...
> > > > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de>
> > wrote
> > > > in message
> > > >
> >
> <1178231572.26629.1277879565094.JavaMail.root(a)gallium.
>
> > > > mathforum.org>...
> > > > > > Torsten Hennig
> > <Torsten.Hennig(a)umsicht.fhg.de>
> > > > wrote
> > > > > > in message
> > > > > >
> > > >
> >
> <1225209501.16645.1277733046680.JavaMail.root(a)gallium.
>
> > > > > > mathforum.org>...
> > > > > > > > > Hi,
> > > > > > > > > My PDE is dN/dt=-c1*dN/dr+c2*dN/dk
> > > > > > > > > from that equation I am getting
> > solution
> > > > N(r,k)
> > > > > > for
> > > > > > > > a
> > > > > > > > > particular t. Then I tried to
> calculate
> > the
> > > > > > total
> > > > > > > > > number of particles for different t
> by
> >
> > > > > > > > > N_sum=dbl integration over
> > > > > > > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > > > > > dr dk
> > > > > > > > > But it is not coming constant. From
> > time
> > > > steps
> > > > > > 1 to
> > > > > > > > 5
> > > > > > > > > it is decreasing and then it is
> > constant.
> > > > > > > > > Can you tell me the procedure of
> > > > calculating
> > > > > > total
> > > > > > > > > number of particles is correct? or
> any
> > > > other
> > > > > > idea?
> > > > > > > > > Thank you
> > > > > > > > > S Som
> > > > > > > >
> > > > > > > > Did you take into account the flux of
> > > > particles
> > > > > > > > over the boundary of your domain of
> > > > integration
> > > > > > > > [r;R] x [k,K] ?
> > > > > > > > N will only be constant if the total
> flux
> > > > sums to
> > > > > > > > zero.
> > > > > > > >
> > > > > > >
> > > > > > > Of course if meant here:
> > > > > > > N_sum will only be constant if the total
> > flux
> > > > over
> > > > > > the
> > > > > > > boundaries sums to zero.
> > > > > > >
> > > > > > > > Best wishes
> > > > > > > > Torsten.
> > > > > >
> > > > > > Hi,
> > > > > > Thank you for your help. Now how do I
> > calculate
> > > > total
> > > > > > flux for my case?
> > > > > > And another thing to calculate
> > > > > > N_sum=dbl integration over
> > > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > > dr dk
> > > > >
> > > > > One question: You seem to work in a
> > > > double-spherical
> > > > > coordinate system, but your PDE is not
> > > > > written in spherical coordinates.
> > > > > Why is this so ?
> > > > > Usually one would expect your PDE to be
> > > > > dN/dt + 1/r^2 * d/dr(r^2*u1*N) + 1/k^2 *
> > > > d/dk(k^2*u2*N)=0
> > > > > where u1, u2 are the velocities in r and
> > > > k-direction.
> > > > >
> > > > > > I am doing in this way below
> > > > > >
> > > > > > N_sum=0;
> > > > > > for i=1:nr
> > > > > > for j=1:nk
> > > > > >
> > > > > >
> > > > > >
> > > >
> >
>
> N_sum=N_sum+((r(i))^2.*(k(j))^2.*N_rad(i,j));
> > > > > > end
> > > > > > end
> > > > > > Is it right?
> > > > > >
> > > > > > With Regards,
> > > > > > Sunipa Som
> > > > >
> > > > > Best wishes
> > > > > Torsten.
> > > >
> > > > Hi,
> > > > My equation is Boltzman equation. Without
> > collision
> > > > term it is
> > > > dN/dt+v*dN/dr+F*dN/dp=0
> > > > where v is velocity, F is force and p is
> momentum
> > > > by rearranging few terms we are getting this
> > > > dN/dt + k*c1*dN/dr-c2*r*dN/dk=0
> > > > here unit of k is 1/meter and r is also
> length.
> > > > so, then my procedure of calculating total
> number
> > of
> > > > particles is right or I have to do in other
> way?
> > > >
> > > > With Regards,
> > > > Sunipa Som
> > >
> > > Is r just a length coordinate ?
> > > Or should it be the radius of a sphere in which
> > particles are moving ?
> > >
> > > Best wishes
> > > Torsten.
> >
> > Hi,
> > r is the radius of a sphere in which particles are
> > moving.
> >
> > Regards,
> > Sunipa som
>
> Then I think already your principle equation is
> wrong.
> Because of the spherical coordinate system,
> it should read
> dN/dt + 1/r^2*d/dr(r^2*v_r*N) + F*dN/dp = 0.
>

I'm sorry; the equation is indeed
dN/dt + v_r*dN/dr + F*dN/dp = 0
as I found in the internet.


> However:
> If your equation reads
> dN/dt + v_x*dN/dx + F/m*dN/dv_x,
> Wikipedia says that N*dx*dv_x is the number of
> particles in the volume dx x dv_x.
> Thus the total number of particles is given by
> N_sum = int_2d N dx dv_x = int_{x=x_min}^{x=x_max}
> int_{v_x = v_x_min}^{v_x=v_x_max} N(x,v_x) dx dv_x.
>
> In spherical coordinates, it should be given by
> N_sum = 4*pi*int_{r=r_min}^{r=r_max}
> int_{v_r=v_r_min}^{v_r=v_r_max} r^2*N(r,v_r) d_v_r
> d_r.
>
> Best wishes
> Torsten.
From: Sunipa Som on
Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de> wrote in message <341894495.32310.1277980412575.JavaMail.root(a)gallium.mathforum.org>...
> > > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de>
> > wrote
> > > in message
> > >
> > <906445592.28720.1277909699309.JavaMail.root(a)gallium.m
> >
> > > athforum.org>...
> > > > > Torsten Hennig <Torsten.Hennig(a)umsicht.fhg.de>
> > > wrote
> > > > > in message
> > > > >
> > >
> > <1178231572.26629.1277879565094.JavaMail.root(a)gallium.
> >
> > > > > mathforum.org>...
> > > > > > > Torsten Hennig
> > > <Torsten.Hennig(a)umsicht.fhg.de>
> > > > > wrote
> > > > > > > in message
> > > > > > >
> > > > >
> > >
> > <1225209501.16645.1277733046680.JavaMail.root(a)gallium.
> >
> > > > > > > mathforum.org>...
> > > > > > > > > > Hi,
> > > > > > > > > > My PDE is dN/dt=-c1*dN/dr+c2*dN/dk
> > > > > > > > > > from that equation I am getting
> > > solution
> > > > > N(r,k)
> > > > > > > for
> > > > > > > > > a
> > > > > > > > > > particular t. Then I tried to
> > calculate
> > > the
> > > > > > > total
> > > > > > > > > > number of particles for different t
> > by
> > >
> > > > > > > > > > N_sum=dbl integration over
> > > > > > > > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > > > > > > dr dk
> > > > > > > > > > But it is not coming constant. From
> > > time
> > > > > steps
> > > > > > > 1 to
> > > > > > > > > 5
> > > > > > > > > > it is decreasing and then it is
> > > constant.
> > > > > > > > > > Can you tell me the procedure of
> > > > > calculating
> > > > > > > total
> > > > > > > > > > number of particles is correct? or
> > any
> > > > > other
> > > > > > > idea?
> > > > > > > > > > Thank you
> > > > > > > > > > S Som
> > > > > > > > >
> > > > > > > > > Did you take into account the flux of
> > > > > particles
> > > > > > > > > over the boundary of your domain of
> > > > > integration
> > > > > > > > > [r;R] x [k,K] ?
> > > > > > > > > N will only be constant if the total
> > flux
> > > > > sums to
> > > > > > > > > zero.
> > > > > > > > >
> > > > > > > >
> > > > > > > > Of course if meant here:
> > > > > > > > N_sum will only be constant if the total
> > > flux
> > > > > over
> > > > > > > the
> > > > > > > > boundaries sums to zero.
> > > > > > > >
> > > > > > > > > Best wishes
> > > > > > > > > Torsten.
> > > > > > >
> > > > > > > Hi,
> > > > > > > Thank you for your help. Now how do I
> > > calculate
> > > > > total
> > > > > > > flux for my case?
> > > > > > > And another thing to calculate
> > > > > > > N_sum=dbl integration over
> > > > > 4*pi*r^2*4*pi*k^2*N(r,k)
> > > > > > > dr dk
> > > > > >
> > > > > > One question: You seem to work in a
> > > > > double-spherical
> > > > > > coordinate system, but your PDE is not
> > > > > > written in spherical coordinates.
> > > > > > Why is this so ?
> > > > > > Usually one would expect your PDE to be
> > > > > > dN/dt + 1/r^2 * d/dr(r^2*u1*N) + 1/k^2 *
> > > > > d/dk(k^2*u2*N)=0
> > > > > > where u1, u2 are the velocities in r and
> > > > > k-direction.
> > > > > >
> > > > > > > I am doing in this way below
> > > > > > >
> > > > > > > N_sum=0;
> > > > > > > for i=1:nr
> > > > > > > for j=1:nk
> > > > > > >
> > > > > > >
> > > > > > >
> > > > >
> > >
> >
> > N_sum=N_sum+((r(i))^2.*(k(j))^2.*N_rad(i,j));
> > > > > > > end
> > > > > > > end
> > > > > > > Is it right?
> > > > > > >
> > > > > > > With Regards,
> > > > > > > Sunipa Som
> > > > > >
> > > > > > Best wishes
> > > > > > Torsten.
> > > > >
> > > > > Hi,
> > > > > My equation is Boltzman equation. Without
> > > collision
> > > > > term it is
> > > > > dN/dt+v*dN/dr+F*dN/dp=0
> > > > > where v is velocity, F is force and p is
> > momentum
> > > > > by rearranging few terms we are getting this
> > > > > dN/dt + k*c1*dN/dr-c2*r*dN/dk=0
> > > > > here unit of k is 1/meter and r is also
> > length.
> > > > > so, then my procedure of calculating total
> > number
> > > of
> > > > > particles is right or I have to do in other
> > way?
> > > > >
> > > > > With Regards,
> > > > > Sunipa Som
> > > >
> > > > Is r just a length coordinate ?
> > > > Or should it be the radius of a sphere in which
> > > particles are moving ?
> > > >
> > > > Best wishes
> > > > Torsten.
> > >
> > > Hi,
> > > r is the radius of a sphere in which particles are
> > > moving.
> > >
> > > Regards,
> > > Sunipa som
> >
> > Then I think already your principle equation is
> > wrong.
> > Because of the spherical coordinate system,
> > it should read
> > dN/dt + 1/r^2*d/dr(r^2*v_r*N) + F*dN/dp = 0.
> >
>
> I'm sorry; the equation is indeed
> dN/dt + v_r*dN/dr + F*dN/dp = 0
> as I found in the internet.
>
>
> > However:
> > If your equation reads
> > dN/dt + v_x*dN/dx + F/m*dN/dv_x,
> > Wikipedia says that N*dx*dv_x is the number of
> > particles in the volume dx x dv_x.
> > Thus the total number of particles is given by
> > N_sum = int_2d N dx dv_x = int_{x=x_min}^{x=x_max}
> > int_{v_x = v_x_min}^{v_x=v_x_max} N(x,v_x) dx dv_x.
> >
> > In spherical coordinates, it should be given by
> > N_sum = 4*pi*int_{r=r_min}^{r=r_max}
> > int_{v_r=v_r_min}^{v_r=v_r_max} r^2*N(r,v_r) d_v_r
> > d_r.
> >
> > Best wishes
> > Torsten.

Hi,
thank you for your help. Then if I do the integration

N_sum=0;
for i=1:nr
for j=1:nk
N_sum=N_sum+(4*pi*(r(i))^2.*N_rad(i,j));
end
end

Is it right way?

With Regards,
Sunipa Som
From: Torsten Hennig on
>Hi,
>My equation is Boltzman equation. Without collision term >it is
>dN/dt+v*dN/dr+F*dN/dp=0
>where v is velocity, F is force and p is momentum
>by rearranging few terms we are getting this
>dN/dt + k*c1*dN/dr-c2*r*dN/dk=0
>here unit of k is 1/meter and r is also length.
>so, then my procedure of calculating total number of >particles is right or I have to do in other way?
>
>With Regards,
>Sunipa Som

Start from the equation
dN/dt + k*c1*dN/dr-c2*r*dN/dk=0
or
dN/dt + div(k*c1*N,-c2*r*N) = 0
to be solved over the rectangle
V=[r_min;r_max]x[k_min,k_max].

Integrate over the rectangle V with boundary A to get
d/dt int_{V} N dV = int_{V} div(-k*c1*N,c2*r*N) dV.
Applying Gauss' integral theorem to the right hand side
results in
d/dt int_{V} N dV = int_{A} (-k*c1*N,c2*r*N)*n dA
where n is the unit normal pointing outwards of the
rectangle.
So if no particles enter the rectangle over the boundary,
the quantity
int_{V} N dV =
int_{r_min}^{r_max} int_{k_min}^{k_max} N(r,k) dr dk
is conserved.
This quantity can be approximated from your calculations
by
sum_{i=1}^{i=N-1} sum_{j=1}^{j=M-1} N(r_i,k_j)*
(r_(i+1)-r_(i))*(k_(j+1)-k_(j)).

Whether this is the number of molecules in the sphere,
you must decide from the physical background of
your problem.

Best wishes
Torsten.