From: Zachar István on
Dear group,

I have a set of ODequations (see below, the ordinary Chemoton modell),
which when evaluated, returns the following error:

NDSolve::ndnum: Encountered non-numerical value for a derivative at t
== 0.`. >>

Could you please pinpoint any mistake here? Thanks in advance.\
Istvan



NDSolve[{

\!\(\*SuperscriptBox["x", "\[Prime]",
MultilineFunction->None]\)[t] == 1,

\!\(\*SuperscriptBox["y", "\[Prime]",
MultilineFunction->None]\)[t] == 1,

\!\(\*SuperscriptBox["a1", "\[Prime]",
MultilineFunction->None]\)[t] ==
a2[t] + 2 (-a1[t]^2 + a5[t]) - a1[t]*x[t],

\!\(\*SuperscriptBox["a2", "\[Prime]",
MultilineFunction->None]\)[t] == -2 a2[t] + a1[t]*x[t] + a3[t]*y[t],

\!\(\*SuperscriptBox["a3", "\[Prime]",
MultilineFunction->None]\)[t] ==
a2[t] - a3[t] + a4[t]*v[t] - a3[t]*y[t],

\!\(\*SuperscriptBox["a4", "\[Prime]",
MultilineFunction->None]\)[t] ==
a3[t] - a4[t] + a5[t]*tp[t] - a4[t]*v[t],

\!\(\*SuperscriptBox["a5", "\[Prime]",
MultilineFunction->None]\)[t] == a1[t]^2 + a4[t] - a5[t] -
a5[t]*tp[t],

\!\(\*SuperscriptBox["v", "\[Prime]",
MultilineFunction->None]\)[t] ==
a3[t] + pV1[t]*r[t] - pV0[t]*V[t] - a4[t]*v[t] - pV1[t]*v[t] -
pV2[t]*v[t] - pV3[t]*v[t] - pV4[t]*v[t] - pV5[t]*v[t],

\!\(\*SuperscriptBox["r", "\[Prime]",
MultilineFunction->None]\)[t] == -pV1[t]*r[t] + tm[t] - ts[t] -
r[t]*ts[t] + pV0[t]*v[t] + pV1[t]*v[t] + pV2[t]*v[t] +
pV3[t]*v[t] + pV4[t]*v[t] + pV5[t]*v[t],

\!\(\*SuperscriptBox["tp", "\[Prime]",
MultilineFunction->None]\)[t] == a4[t] - tp[t] - a5[t]*tp[t],

\!\(\*SuperscriptBox["ts", "\[Prime]",
MultilineFunction->None]\)[t] == tm[t] + tp[t] - ts[t],

\!\(\*SuperscriptBox["tm", "\[Prime]",
MultilineFunction->None]\)[t] == -tm[t] - s[t]*tm[t] + r[t]*ts[t],

\!\(\*SuperscriptBox["pV0", "\[Prime]",
MultilineFunction->None]\)[t] ==
pV1[t]*r[t] - pV0[t]*v[t] + 2*pV5[t]*v[t],

\!\(\*SuperscriptBox["pV1", "\[Prime]",
MultilineFunction->None]\)[t] == -pV1[t]*r[t] + pV0[t]*v[t] -
pV1[t]*v[t],

\!\(\*SuperscriptBox["pV2", "\[Prime]",
MultilineFunction->None]\)[t] == -pV2[t]*r[t] + pV1[t]*v[t],

\!\(\*SuperscriptBox["pV3", "\[Prime]",
MultilineFunction->None]\)[t] == -pV3[t]*r[t] + pV2[t]*v[t],

\!\(\*SuperscriptBox["pV4", "\[Prime]",
MultilineFunction->None]\)[t] == -pV4[t]*r[t] + pV3[t]*v[t],

\!\(\*SuperscriptBox["pV5", "\[Prime]",
MultilineFunction->None]\)[t] == -pV5[t]*r[t] + pV4[t]*v[t],

\!\(\*SuperscriptBox["s", "\[Prime]",
MultilineFunction->None]\)[t] == s[t]*tm[t],

\!\(\*SuperscriptBox["q", "\[Prime]",
MultilineFunction->None]\)[t] == s[t]^(3/2.),

x[0] == 0.4, y[0] == 0,
a1[0] == 0.4, a2[0] == 0, a3[0] == 0, a4[0] == 0, a5[0] == 0,
v[0] == 0.01, r[0] == 0.01, tp[0] == 0.01, ts[0] == 0, tm[0] == 0,
pV0[0] == 0.01, pV1[0] == 0, pV2[0] == 0, pV3[0] == 0, pV4[0] == 0,
pV5[0] == 0,
s[0] == 0.2, q[0] == 1},

{x, y, a1, a2, a3, a4, a5, v, r, tp, ts, tm, pV0, pV1, pV2, pV3, pV4,
pV5, s, q}, {t, 0, 10}]

From: Alois Steindl on
Hello,
your ODE for v contains a V[t] instead of v[t].
Quite hard to spot.

Good luck
Alois

From: István Zachar on
Thank you Alois and Simon for your typo-hunt, I've checked it thoroughly
(obviously not that thoroughly) for two days, and could not spot it : )
It indeed works now.
Istvan

On 4/22/2010 10:31 AM, Alois Steindl wrote:
> Hello,
> your ODE for v contains a V[t] instead of v[t].
> Quite hard to spot.
>
> Good luck
> Alois
>

From: Simon Pearce on
You have a capital V[t] in the equation for v'[t], changing this to v[t] =
gives an answer.

Simon

-----Original Message-----
From: Zachar Istv=E1n [mailto:replicatorzed(a)gmail.com]
Sent: 22 April 2010 08:32
Subject: NDSolve cannot solve set of ODEs

Dear group,

I have a set of ODequations (see below, the ordinary Chemoton modell),
which when evaluated, returns the following error:

NDSolve::ndnum: Encountered non-numerical value for a derivative at t
== 0.`. >>

Could you please pinpoint any mistake here? Thanks in advance.\
Istvan



NDSolve[{

\!\(\*SuperscriptBox["x", "\[Prime]",
MultilineFunction->None]\)[t] == 1,

\!\(\*SuperscriptBox["y", "\[Prime]",
MultilineFunction->None]\)[t] == 1,

\!\(\*SuperscriptBox["a1", "\[Prime]",
MultilineFunction->None]\)[t] ==
a2[t] + 2 (-a1[t]^2 + a5[t]) - a1[t]*x[t],

\!\(\*SuperscriptBox["a2", "\[Prime]",
MultilineFunction->None]\)[t] == -2 a2[t] + a1[t]*x[t] + a3[t]*y[t],

\!\(\*SuperscriptBox["a3", "\[Prime]",
MultilineFunction->None]\)[t] ==
a2[t] - a3[t] + a4[t]*v[t] - a3[t]*y[t],

\!\(\*SuperscriptBox["a4", "\[Prime]",
MultilineFunction->None]\)[t] ==
a3[t] - a4[t] + a5[t]*tp[t] - a4[t]*v[t],

\!\(\*SuperscriptBox["a5", "\[Prime]",
MultilineFunction->None]\)[t] == a1[t]^2 + a4[t] - a5[t] -
a5[t]*tp[t],

\!\(\*SuperscriptBox["v", "\[Prime]",
MultilineFunction->None]\)[t] ==
a3[t] + pV1[t]*r[t] - pV0[t]*V[t] - a4[t]*v[t] - pV1[t]*v[t] -
pV2[t]*v[t] - pV3[t]*v[t] - pV4[t]*v[t] - pV5[t]*v[t],

\!\(\*SuperscriptBox["r", "\[Prime]",
MultilineFunction->None]\)[t] == -pV1[t]*r[t] + tm[t] - ts[t] -
r[t]*ts[t] + pV0[t]*v[t] + pV1[t]*v[t] + pV2[t]*v[t] +
pV3[t]*v[t] + pV4[t]*v[t] + pV5[t]*v[t],

\!\(\*SuperscriptBox["tp", "\[Prime]",
MultilineFunction->None]\)[t] == a4[t] - tp[t] - a5[t]*tp[t],

\!\(\*SuperscriptBox["ts", "\[Prime]",
MultilineFunction->None]\)[t] == tm[t] + tp[t] - ts[t],

\!\(\*SuperscriptBox["tm", "\[Prime]",
MultilineFunction->None]\)[t] == -tm[t] - s[t]*tm[t] + r[t]*ts[t],

\!\(\*SuperscriptBox["pV0", "\[Prime]",
MultilineFunction->None]\)[t] ==
pV1[t]*r[t] - pV0[t]*v[t] + 2*pV5[t]*v[t],

\!\(\*SuperscriptBox["pV1", "\[Prime]",
MultilineFunction->None]\)[t] == -pV1[t]*r[t] + pV0[t]*v[t] -
pV1[t]*v[t],

\!\(\*SuperscriptBox["pV2", "\[Prime]",
MultilineFunction->None]\)[t] == -pV2[t]*r[t] + pV1[t]*v[t],

\!\(\*SuperscriptBox["pV3", "\[Prime]",
MultilineFunction->None]\)[t] == -pV3[t]*r[t] + pV2[t]*v[t],

\!\(\*SuperscriptBox["pV4", "\[Prime]",
MultilineFunction->None]\)[t] == -pV4[t]*r[t] + pV3[t]*v[t],

\!\(\*SuperscriptBox["pV5", "\[Prime]",
MultilineFunction->None]\)[t] == -pV5[t]*r[t] + pV4[t]*v[t],

\!\(\*SuperscriptBox["s", "\[Prime]",
MultilineFunction->None]\)[t] == s[t]*tm[t],

\!\(\*SuperscriptBox["q", "\[Prime]",
MultilineFunction->None]\)[t] == s[t]^(3/2.),

x[0] == 0.4, y[0] == 0,
a1[0] == 0.4, a2[0] == 0, a3[0] == 0, a4[0] == 0, =
a5[0] == 0,
v[0] == 0.01, r[0] == 0.01, tp[0] == 0.01, ts[0] == 0, =
tm[0] == 0,
pV0[0] == 0.01, pV1[0] == 0, pV2[0] == 0, pV3[0] == 0, =
pV4[0] == 0,
pV5[0] == 0,
s[0] == 0.2, q[0] == 1},

{x, y, a1, a2, a3, a4, a5, v, r, tp, ts, tm, pV0, pV1, pV2, pV3, pV4,
pV5, s, q}, {t, 0, 10}]

=
This message has been checked for viruses but the contents of an attach=
ment=0D=0Amay still contain software viruses which could damage your co=
mputer system:=0D=0Ayou are advised to perform your own checks. Email c=
ommunications with the=0D=0AUniversity of Nottingham may be monitored a=
s permitted by UK legislation.=

From: Bob Hanlon on
I recommend that you define your equation and variable lists outside the NDSolve and check with

Complement[Cases[eqns, x_Symbol[t] -> x, Infinity] // Union, vars]


Bob Hanlon

---- "Istv=C3=A1n Zachar" <replicatorzed(a)gmail.com> wrote:

==========================
Thank you Alois and Simon for your typo-hunt, I've checked it thoroughly
(obviously not that thoroughly) for two days, and could not spot it : )
It indeed works now.
Istvan

On 4/22/2010 10:31 AM, Alois Steindl wrote:
> Hello,
> your ODE for v contains a V[t] instead of v[t].
> Quite hard to spot.
>
> Good luck
> Alois
>