From: micode on
Are there trait definitions and common names for the param_type access
methods of std::random (i.e., #include <random>)? The distribution-
specific names are sensible, but is there introspection support?

Each distribution template defines a struct param_type { ... }, as
well as access methods. Access methods are distribution-centric. For
example, the first parameter is _RealType mean() for normal, double
mean() for poisson, result_type a() for uniform, and _RealType a() for
cauchy, weibull and extreme_value distributions.

Summary of /usr/local/include/c++/4.5.0/bits/random.h (scalars only)
is

uniform_int_distribution, uniform_real_distribution
result_type a() const { return _M_a; }
result_type b() const { return _M_b; }

cauchy_distribution, weibull_distribution, extreme_value_distribution
_RealType a() const { return _M_a; }
_RealType b() const { return _M_b; }

normal_distribution\
_RealType mean() const { return _M_mean; }
_RealType stddev() const{ return _M_stddev; }

lognormal_distribution
_RealType m() const { return _M_m; }
_RealType s() const { return _M_s; }

fisher_f_distribution
_RealType m() const { return _M_m; }
_RealType n() const { return _M_n; }

gamma_distribution
_RealType alpha() const { return _M_alpha; }
_RealType beta() const { return _M_beta; }

chi_squared_distribution, student_t_distribution
_RealType n() const { return _M_n; }

bernoulli_distribution, geometric_distribution
double p() const { return _M_p; }

binomial_distribution
_IntType t() const { return _M_t; }
double p() const { return _M_p; }

negative_binomial_distribution
_IntType k() const { return _M_k; }
double p() const { return _M_p; }

poisson_distribution
double mean() const { return _M_mean; }

exponential_distribution
_RealType lambda() const { return _M_lambda; }


--
[ See http://www.gotw.ca/resources/clcm.htm for info about ]
[ comp.lang.c++.moderated. First time posters: Do this! ]