Prev: Saving code as PDF
Next: NDSove::berr error
From: Allamarein on 1 Mar 2010 05:19 I compiled this program to solve a ODEs, but it is not able to converge. Someone can suggest a method? F = 26 *10^5; \[Mu] = 5.9742 *10^24 *6.67428* 10^-11; Isp = 290; m = F/(9.81 Isp); GLOW = 80000 + 23805 + 9000 + 370 + 8500 + 2556 + 1056 + 413 + 1300 + 385; tb = 80000/m; r0 = 6371; \[Theta]0 = 85 Degree; \[Gamma]0 = 85 Degree; V0 = 100; V = Sqrt[(r'[t]^2 + r[t]^2 \[Theta]'[t]^2)]; R = 1.44 Exp[-0.14 (r[t]/1000 - 6380)] V^2; On[NDSolve::"ndcf"]; Off[NDSolve::"precw"]; NDSolve[{ r''[t] - r [t] \[Theta]'[t]^2 == (-M [t] \[Mu] + r[t]^2 (F - R) Cos[\[Gamma][t] - \[Theta][t]])/(M[t] r[t]^2), 2 r'[t] \[Theta]'[t] + r[t] \[Theta]''[t] == ((F - R) Sin[\[Gamma][t] - \[Theta][t]])/( M [t] r[t]), \[Gamma]'[ t] == -\[Mu] (-Sin[\[Gamma][t] - \[Theta][t]])/(r[t]^2 V) , M'[t] == -m, r[0] == r0, \[Gamma][0] == \[Gamma]0, \[Theta][0] == \[Theta]0, r'[0] == V0 Cos[\[Gamma]0 - \[Theta]0], \[Theta]'[0] == r0 V0 Sin[\[Gamma]0 - \[Theta]0], M[0] == GLOW}, {r[t], \[Theta][t], \[Gamma][t], M[t]}, {t, 0, tb}, MaxSteps -> 1000000, AccuracyGoal -> 25, PrecisionGoal -> 40, WorkingPrecision -> 50];
|
Pages: 1 Prev: Saving code as PDF Next: NDSove::berr error |