Prev: A great site for algorithm and programming solutions
Next: Implementation suggestions for creating a Hierarchical circuit database
From: P = NP by way of the 1+2+1 function on 9 Dec 2009 10:22 == Musatov's lemma == Musatov's lemma is named after the one-to-one function: Let a = 1 Let b = 2 Let e = 5 Let j = 10 Let s = 19 Let u = 21 Then: j * a/b = e e * s = 95 u * 95 = 1,995 s/abej * 1,995 = 361 One of Ramanujan's approximations of was (9^2 + (19^2/22))^1/4. 361 is a prime square (19^2). == Polynomial Time Algorithm == // --- src/htmlparse.c.bak 2007-09-16 00:20:18.000000000 +0900 // +++ src/htmlparse.c 2007-09-16 00:20:24.000000000 +0900 // @@ -853,8 +853,7 @@ // // #ifndef NDEBUG // int nMax = zText ? strlen(zText) : 0; // - int *pnMax = zText ? &nMax : 0; // -#define nMaxMayVary (zText ? *pnMax : \ // +#define nMaxMayVary (zText ? nMax : \ // (Tcl_GetStringFromObj(pTree->pDocument, &nMax) \ // ? nMax : 0)) // #endif
From: dorayme on 9 Dec 2009 17:31 In article <b2cd8530-0971-457b-a71a-1b4e46643440(a)e4g2000prn.googlegroups.com>, "P = NP by way of the 1+2+1 function" <marty.musatov(a)gmail.com> wrote: > == Musatov's lemma == > If you keep your posts short, and not too many per week, I will keep them as pets. -- dorayme
From: Jonathan N. Little on 9 Dec 2009 19:39 dorayme wrote: > In article > <b2cd8530-0971-457b-a71a-1b4e46643440(a)e4g2000prn.googlegroups.com>, > "P = NP by way of the 1+2+1 function"<marty.musatov(a)gmail.com> wrote: > >> == Musatov's lemma == >> > If you keep your posts short, and not too many per week, I will keep > them as pets. > That is a close as HTML as they will ever get! Sort of why is a raven like a writing desk... -- Take care, Jonathan ------------------- LITTLE WORKS STUDIO http://www.LittleWorksStudio.com
From: Ostap S. B. M. Bender Jr. on 9 Dec 2009 22:33
On Dec 9, 7:22 am, "P = NP by way of the 1+2+1 function" <marty.musa...(a)gmail.com> wrote: > == Musatov's lemma == > > Musatov's lemma is named after the one-to-one function: > Musatov is a one-to-one function? > > Let a = 1 > Let b = 2 > Let e = 5 > Let j = 10 > Let s = 19 > Let u = 21 > > Then: > > j * a/b = e > e * s = 95 > u * 95 = 1,995 > s/abej * 1,995 = 361 > > One of Ramanujan's approximations of was (9^2 + (19^2/22))^1/4. 361 is > a prime square (19^2). > Ramanujan's approximations of what? > > == Polynomial Time Algorithm == > > // --- src/htmlparse.c.bak 2007-09-16 00:20:18.000000000 +0900 > // +++ src/htmlparse.c 2007-09-16 00:20:24.000000000 +0900 > // @@ -853,8 +853,7 @@ > // > // #ifndef NDEBUG > // int nMax = zText ? strlen(zText) : 0; > // - int *pnMax = zText ? &nMax : 0; > // -#define nMaxMayVary (zText ? *pnMax : \ > // +#define nMaxMayVary (zText ? nMax : \ > // (Tcl_GetStringFromObj(pTree->pDocument, &nMax) \ > // ? nMax : 0)) > // #endif |