From: P = NP by way of the 1+2+1 function on
== Musatov's lemma ==

Musatov's lemma is named after the one-to-one function:

Let a = 1
Let b = 2
Let e = 5
Let j = 10
Let s = 19
Let u = 21

Then:

j * a/b = e
e * s = 95
u * 95 = 1,995
s/abej * 1,995 = 361

One of Ramanujan's approximations of was (9^2 + (19^2/22))^1/4. 361 is
a prime square (19^2).

== Polynomial Time Algorithm ==

// --- src/htmlparse.c.bak 2007-09-16 00:20:18.000000000 +0900
// +++ src/htmlparse.c 2007-09-16 00:20:24.000000000 +0900
// @@ -853,8 +853,7 @@
//
// #ifndef NDEBUG
// int nMax = zText ? strlen(zText) : 0;
// - int *pnMax = zText ? &nMax : 0;
// -#define nMaxMayVary (zText ? *pnMax : \
// +#define nMaxMayVary (zText ? nMax : \
// (Tcl_GetStringFromObj(pTree->pDocument, &nMax) \
// ? nMax : 0))
// #endif
From: dorayme on
In article
<b2cd8530-0971-457b-a71a-1b4e46643440(a)e4g2000prn.googlegroups.com>,
"P = NP by way of the 1+2+1 function" <marty.musatov(a)gmail.com> wrote:

> == Musatov's lemma ==
>
If you keep your posts short, and not too many per week, I will keep
them as pets.

--
dorayme
From: Jonathan N. Little on
dorayme wrote:
> In article
> <b2cd8530-0971-457b-a71a-1b4e46643440(a)e4g2000prn.googlegroups.com>,
> "P = NP by way of the 1+2+1 function"<marty.musatov(a)gmail.com> wrote:
>
>> == Musatov's lemma ==
>>
> If you keep your posts short, and not too many per week, I will keep
> them as pets.
>

That is a close as HTML as they will ever get! Sort of why is a raven
like a writing desk...

--
Take care,

Jonathan
-------------------
LITTLE WORKS STUDIO
http://www.LittleWorksStudio.com
From: Ostap S. B. M. Bender Jr. on
On Dec 9, 7:22 am, "P = NP by way of the 1+2+1 function"
<marty.musa...(a)gmail.com> wrote:
> == Musatov's lemma ==
>
> Musatov's lemma is named after the one-to-one function:
>

Musatov is a one-to-one function?

>
> Let a = 1
> Let b = 2
> Let e = 5
> Let j = 10
> Let s = 19
> Let u = 21
>
> Then:
>
> j * a/b = e
> e * s = 95
> u * 95 = 1,995
> s/abej * 1,995 = 361
>
> One of Ramanujan's approximations of was (9^2 + (19^2/22))^1/4. 361 is
> a prime square (19^2).
>

Ramanujan's approximations of what?

>
> ==  Polynomial Time Algorithm ==
>
> // --- src/htmlparse.c.bak      2007-09-16 00:20:18.000000000 +0900
> // +++ src/htmlparse.c  2007-09-16 00:20:24.000000000 +0900
> // @@ -853,8 +853,7 @@
> //
> //  #ifndef NDEBUG
> //      int nMax = zText ? strlen(zText) : 0;
> // -    int *pnMax = zText ? &nMax : 0;
> // -#define nMaxMayVary (zText ? *pnMax :                                     \
> // +#define nMaxMayVary (zText ? nMax :                               \
> //                   (Tcl_GetStringFromObj(pTree->pDocument, &nMax)   \
> //                    ? nMax : 0))
> //  #endif