From: Linus Walleij on
This adds an interface to the DMAengine to make it possible to
reconfigure a slave channel at runtime. We add a few foreseen
config parameters to the passed struct, with a void * pointer
for custom per-device or per-platform runtime slave data.

Signed-off-by: Linus Walleij <linus.walleij(a)stericsson.com>
---
This version was revised after discussion, it splits the control
arguments in source/destination pairs to prepare for (among other
things) device to device transfers.
---
include/linux/dmaengine.h | 75 +++++++++++++++++++++++++++++++++++++++++++++
1 files changed, 75 insertions(+), 0 deletions(-)

diff --git a/include/linux/dmaengine.h b/include/linux/dmaengine.h
index 5204f01..406b820 100644
--- a/include/linux/dmaengine.h
+++ b/include/linux/dmaengine.h
@@ -114,11 +114,17 @@ enum dma_ctrl_flags {
* @DMA_TERMINATE_ALL: terminate all ongoing transfers
* @DMA_PAUSE: pause ongoing transfers
* @DMA_RESUME: resume paused transfer
+ * @DMA_SLAVE_CONFIG: this command is only implemented by DMA controllers
+ * that need to runtime reconfigure the slave channels (as opposed to passing
+ * configuration data in statically from the platform). An additional
+ * argument of struct dma_slave_config must be passed in with this
+ * command.
*/
enum dma_ctrl_cmd {
DMA_TERMINATE_ALL,
DMA_PAUSE,
DMA_RESUME,
+ DMA_SLAVE_CONFIG,
};

/**
@@ -199,6 +205,75 @@ struct dma_chan_dev {
atomic_t *idr_ref;
};

+/**
+ * enum dma_slave_buswidth - defines bus with of the DMA slave
+ * device, source or target busses
+ */
+enum dma_slave_buswidth {
+ DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
+ DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
+ DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
+ DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
+ DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
+};
+
+/**
+ * struct dma_slave_config - dma slave channel runtime config
+ * @direction: whether the data shall go in or out on this slave
+ * channel, right now. DMA_TO_DEVICE and DMA_FROM_DEVICE are
+ * legal values, DMA_BIDIRECTIONAL is not acceptable since we
+ * need to differentiate source and target addresses.
+ * @src_addr: this is the physical address where DMA slave data
+ * should be read (RX), if the source is memory this argument is
+ * ignored.
+ * @dst_addr: this is the physical address where DMA slave data
+ * should be written (TX), if the source is memory this argument
+ * is ignored.
+ * @src_addr_width: this is the width in bytes of the source (RX)
+ * register where DMA data shall be read. If the source
+ * is memory this may be ignored depending on architecture.
+ * Legal values: 1, 2, 4, 8.
+ * @dst_addr_width: same as src_addr_width but for destination
+ * target (TX) mutatis mutandis.
+ * @src_maxburst: the maximum number of words (note: words, as in
+ * units of the src_addr_width member, not bytes) that can be sent
+ * in one burst to the device. Typically something like half the
+ * FIFO depth on I/O peripherals so you don't overflow it. This
+ * may or may not be applicable on memory sources.
+ * @dst_maxburst: same as src_maxburst but for destination target
+ * mutatus mutandis.
+ * @private_config: if you need to pass in specialized configuration
+ * at runtime, apart from the generic things supported in this
+ * struct, you provide it in this pointer and dereference it inside
+ * your dmaengine driver to get the proper configuration bits out.
+ *
+ * This struct is passed in as configuration data to a DMA engine
+ * in order to set up a certain channel for DMA transport at runtime.
+ * The DMA device/engine has to provide support for an additional
+ * command in the channel config interface, DMA_SLAVE_CONFIG
+ * and this struct will then be passed in as an argument to the
+ * DMA engine device_control() function.
+ *
+ * The rationale for adding configuration information to this struct
+ * is as follows: if it is likely that most DMA slave controllers in
+ * the world will support the configuration option, then make it
+ * generic. If not: if it is fixed so that it be sent in static from
+ * the platform data, then prefer to do that. Else, if it is neither
+ * fixed at runtime, nor generic enough (such as bus mastership on
+ * some CPU family and whatnot) then pass it in the private_config
+ * member and dereference it to some per-device struct in your driver.
+ */
+struct dma_slave_config {
+ enum dma_data_direction direction;
+ dma_addr_t src_addr;
+ dma_addr_t dst_addr;
+ enum dma_slave_buswidth src_addr_width;
+ enum dma_slave_buswidth dst_addr_width;
+ u32 src_maxburst;
+ u32 dst_maxburst;
+ void *private_config;
+};
+
static inline const char *dma_chan_name(struct dma_chan *chan)
{
return dev_name(&chan->dev->device);
--
1.7.1.1

--
To unsubscribe from this list: send the line "unsubscribe linux-kernel" in
the body of a message to majordomo(a)vger.kernel.org
More majordomo info at http://vger.kernel.org/majordomo-info.html
Please read the FAQ at http://www.tux.org/lkml/