Prev: [PATCH 5/5] scsi: megaraid_sas - Version and documentation update
Next: Outdated sysfs.txt document?
From: Michal Nazarewicz on 11 Aug 2010 18:00 The put_dec() and family of functions were based on a code optimised for processors with 8-bit ALU but since we don't need to limit ourselves to such small ALUs, the code was optimised and used capacities of an 16-bit ALU anyway. This patch goes further and uses the full capacity of the processor's ALU. On 64-bit machines, the number is repeatedly divided by 100,000 to split it into 5-decimal-digit which are converted using the obvious base conversion algorithm expect division by ten is replaced with multiplication and shifts. On 32-bit machines, no division is performed at all and in particular, no 64-bit division is performed. This can speed up conversion a few times and up to 10 times! Signed-off-by: Michal Nazarewicz <mina86(a)mina86.com> Signed-off-by: Douglas W. Jones <jones(a)cs.uiowa.edu> Cc: Denis Vlasenko <vda.linux(a)googlemail.com> --- lib/vsprintf.c | 269 ++++++++++++++++++++++++++++++++++++++------------------ 1 files changed, 185 insertions(+), 84 deletions(-) I redid the put_dec_full5() so that it now uses a 64-bit multiplication. As a result it no longer has any if()s and works faster. put_dec_full5() is used by a "generic" put_dec() function (ie. the one intended for 64-bit processors) so the 64-bit multiplication is not an issue. On 32-bit machines, it is not used because for 32-bit processors a dedicated put_dec() function is provided. It uses put_dec_full4() function and performs no 64-bit division. Here's a benchmark run on my Phenom II. The first column is native 64-bit binary, the second one is a 32-bit binary running on 64-bit system, and the last column is ARMv7: orig_put_dec 1.870302s 6.073862s 9.986883s Original mod1_put_dec 1.540612s 5.993207s 9.933345s mod2_put_dec 1.617048s 6.067906s 9.965142s mod3_put_dec 1.389729s 5.727067s Generic one mod3_put_dec' 9.993991s Older version of generic one mod4_put_dec 1.539815s 5.773751s 10.017138s mod5_put_dec 1.441403s 7.258659s 14.240075s mod6_put_dec 1.545742s 1.801377s 1.122790s 32-bit version mod7_put_dec 1.595426s 1.860937s 1.132802s mod8_put_dec 1.395838s 5.082146s 7.978391s So on Phenom II in 32-bit mode, the 32-bit version is 3 times faster then the generic one. On ARM it's almost 9. diff --git a/lib/vsprintf.c b/lib/vsprintf.c index b8a2f54..6819019 100644 --- a/lib/vsprintf.c +++ b/lib/vsprintf.c @@ -278,109 +278,210 @@ int skip_atoi(const char **s) return i; } -/* Decimal conversion is by far the most typical, and is used + +#if BITS_PER_LONG > 32 /* machine is at least 64-bit */ \ + || ULLONG_MAX > 18446744073709551615ULL /* long long is more than 64-bit */ + +/* + * Decimal conversion is by far the most typical, and is used * for /proc and /sys data. This directly impacts e.g. top performance * with many processes running. We optimize it for speed - * using code from - * http://www.cs.uiowa.edu/~jones/bcd/decimal.html - * (with permission from the author, Douglas W. Jones). */ - -/* Formats correctly any integer in [0,99999]. - * Outputs from one to five digits depending on input. - * On i386 gcc 4.1.2 -O2: ~250 bytes of code. */ -static noinline_for_stack -char *put_dec_trunc(char *buf, unsigned q) + * using ideas described at <http://www.cs.uiowa.edu/~jones/bcd/divide.html> + * (with permission from the author, Douglas W. Jones). + * + * Formats correctly any integer in [0, 99999]. + */ +static noinline_for_stack char *put_dec_full5(char *buf, unsigned q) { - unsigned d3, d2, d1, d0; - d1 = (q>>4) & 0xf; - d2 = (q>>8) & 0xf; - d3 = (q>>12); - - d0 = 6*(d3 + d2 + d1) + (q & 0xf); - q = (d0 * 0xcd) >> 11; - d0 = d0 - 10*q; - *buf++ = d0 + '0'; /* least significant digit */ - d1 = q + 9*d3 + 5*d2 + d1; - if (d1 != 0) { - q = (d1 * 0xcd) >> 11; - d1 = d1 - 10*q; - *buf++ = d1 + '0'; /* next digit */ - - d2 = q + 2*d2; - if ((d2 != 0) || (d3 != 0)) { - q = (d2 * 0xd) >> 7; - d2 = d2 - 10*q; - *buf++ = d2 + '0'; /* next digit */ - - d3 = q + 4*d3; - if (d3 != 0) { - q = (d3 * 0xcd) >> 11; - d3 = d3 - 10*q; - *buf++ = d3 + '0'; /* next digit */ - if (q != 0) - *buf++ = q + '0'; /* most sign. digit */ - } - } - } + unsigned r; + + /* + * '(x * 0xcccd) >> 19' is an approximation of 'x / 10' that + * gives correct results for all x < 81920 unless we use full + * 64-bit intermidiate result in which case it gives correct + * results for x < 262149. Because of this, we cast 0xcccd to + * (uint64_t). Thanks to this we can produce full 5 digits + * without any branches. + */ + + r = (q * (uint64_t)0xcccd) >> 19; + *buf++ = (q - 10 * r) + '0'; + + /* + * Other, possible ways to approx. divide by 10 + * -- bigger loose most significant bits and are worse -- + * (x * 0xcccd) >> 19 x < 81920 (x < 262149 when 64-bit used) + * (x * 0x6667) >> 18 x < 43699 + * (x * 0x3334) >> 17 x < 16389 + * (x * 0x199a) >> 16 x < 16389 + * (x * 0x0ccd) >> 15 x < 16389 + * (x * 0x0667) >> 14 x < 2739 + * (x * 0x0334) >> 13 x < 1029 + * (x * 0x019a) >> 12 x < 1029 + * (x * 0x00cd) >> 11 x < 1029 shorter code than * 0x67 (on i386) + * (x * 0x0067) >> 10 x < 179 + * (x * 0x0034) >> 9 x < 69 same + * (x * 0x001a) >> 8 x < 69 same + * (x * 0x000d) >> 7 x < 69 same, shortest code (on i386) + * (x * 0x0007) >> 6 x < 19 + * -- smaller are useless -- + * See <http://www.cs.uiowa.edu/~jones/bcd/divide.html>. + */ + + q = (r * 0x199a) >> 16; + *buf++ = (r - 10 * q) + '0'; + + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; + + q = (r * 0xcd) >> 11; + *buf++ = (r - 10 * q) + '0'; + + *buf++ = q + '0'; return buf; } -/* Same with if's removed. Always emits five digits */ -static noinline_for_stack -char *put_dec_full(char *buf, unsigned q) + +/* Same as above but do not pad with zeros. */ +static noinline_for_stack char *put_dec_trunc5(char *buf, unsigned q) { - /* BTW, if q is in [0,9999], 8-bit ints will be enough, */ - /* but anyway, gcc produces better code with full-sized ints */ - unsigned d3, d2, d1, d0; - d1 = (q>>4) & 0xf; - d2 = (q>>8) & 0xf; - d3 = (q>>12); + unsigned r; /* - * Possible ways to approx. divide by 10 - * gcc -O2 replaces multiply with shifts and adds - * (x * 0xcd) >> 11: 11001101 - shorter code than * 0x67 (on i386) - * (x * 0x67) >> 10: 1100111 - * (x * 0x34) >> 9: 110100 - same - * (x * 0x1a) >> 8: 11010 - same - * (x * 0x0d) >> 7: 1101 - same, shortest code (on i386) + * If q is 5-digit just use the put_dec_full5() instead of + * cascading if()s. */ - d0 = 6*(d3 + d2 + d1) + (q & 0xf); - q = (d0 * 0xcd) >> 11; - d0 = d0 - 10*q; - *buf++ = d0 + '0'; - d1 = q + 9*d3 + 5*d2 + d1; - q = (d1 * 0xcd) >> 11; - d1 = d1 - 10*q; - *buf++ = d1 + '0'; - - d2 = q + 2*d2; - q = (d2 * 0xd) >> 7; - d2 = d2 - 10*q; - *buf++ = d2 + '0'; - - d3 = q + 4*d3; - q = (d3 * 0xcd) >> 11; /* - shorter code */ - /* q = (d3 * 0x67) >> 10; - would also work */ - d3 = d3 - 10*q; - *buf++ = d3 + '0'; - *buf++ = q + '0'; + if (q > 9999) + return put_dec_full5(buf, q); + + r = (q * 0x199a) >> 16; + *buf++ = (q - 10 * r) + '0'; + + if (r) { + q = (r * 0xcd) >> 11; + *buf++ = (r - 10 * q) + '0'; + + if (q) { + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; + + if (r) + *buf++ = r + '0'; + } + } return buf; } + /* No inlining helps gcc to use registers better */ static noinline_for_stack char *put_dec(char *buf, unsigned long long num) { - while (1) { - unsigned rem; - if (num < 100000) - return put_dec_trunc(buf, num); - rem = do_div(num, 100000); - buf = put_dec_full(buf, rem); + while (num >= 100000) + buf = put_dec_full5(buf, do_div(num, 100000)); + return put_dec_trunc5(buf, num); +} + +/* This is used by ip4_string(). */ +#define put_dec_8bit put_dec_trunc5 + +#else /* BITS_PER_LONG <= 32 (ie. 32-bit machine) && long long is 64-bit*/ + +/* + * This is similar to the put_dec_full5() above expect it handles + * numbers from 0 to 9999 (ie. at most four digits). It is used by + * the put_dec() below which is optimised for 32-bit processors. + */ +static noinline_for_stack +char *put_dec_full4(char *buf, unsigned q) +{ + unsigned r; + + r = (q * 0xcccd) >> 19; + *buf++ = (q - 10 * r) + '0'; + + q = (r * 0x199a) >> 16; + *buf++ = (r - 10 * q) + '0'; + + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; + + *buf++ = r + '0'; + + return buf; +} + +/* + * Similar to above but handles only 8-bit operands and does not pad + * with zeros. Used by ip4_string(). + */ +static noinline_for_stack +char *put_dec_8bit(char *buf, unsigned q) +{ + unsigned r; + + r = (q * 0xcd) >> 11; + *buf++ = (q - 10 * r) + '0'; + + if (r) { + q = (r * 0xd) >> 7; + *buf++ = (r - 10 * q) + '0'; + + if (q) + *buf++ = q + '0'; } + + return buf; } +/* + * Based on code by Douglas W. Jones found at + * <http://www.cs.uiowa.edu/~jones/bcd/decimal.html#sixtyfour> (with + * permission from the author). This performs no 64-bit division and + * hence should be faster on 32-bit machines then the version of the + * function above. + */ +static noinline_for_stack +char *put_dec(char *buf, unsigned long long n) +{ + uint32_t d3, d2, d1, q; + + if (n < 10) { + *buf++ = '0' + (unsigned)n; + return buf; + } + + d1 = (n >> 16) & 0xFFFF; + d2 = (n >> 32) & 0xFFFF; + d3 = (n >> 48) & 0xFFFF; + + q = 656 * d3 + 7296 * d2 + 5536 * d1 + (n & 0xFFFF); + + q = q / 10000; + buf = put_dec_full4(buf, q % 10000); + + d1 = q + 7671 * d3 + 9496 * d2 + 6 * d1; + q = d1 / 10000; + buf = put_dec_full4(buf, d1 % 10000); + + d2 = q + 4749 * d3 + 42 * d2; + q = d2 / 10000; + buf = put_dec_full4(buf, d2 % 10000); + + d3 = q + 281 * d3; + q = d3 / 10000; + buf = put_dec_full4(buf, d3 % 10000); + + buf = put_dec_full4(buf, q); + + while (buf[-1] == '0') + --buf; + + return buf; +} + +#endif + #define ZEROPAD 1 /* pad with zero */ #define SIGN 2 /* unsigned/signed long */ #define PLUS 4 /* show plus */ @@ -754,7 +855,7 @@ char *ip4_string(char *p, const u8 *addr, const char *fmt) } for (i = 0; i < 4; i++) { char temp[3]; /* hold each IP quad in reverse order */ - int digits = put_dec_trunc(temp, addr[index]) - temp; + int digits = put_dec_8bit(temp, addr[index]) - temp; if (leading_zeros) { if (digits < 3) *p++ = '0'; -- 1.7.1 -- To unsubscribe from this list: send the line "unsubscribe linux-kernel" in the body of a message to majordomo(a)vger.kernel.org More majordomo info at http://vger.kernel.org/majordomo-info.html Please read the FAQ at http://www.tux.org/lkml/ |