From: TRan Thanh on 28 Jan 2010 05:35 I writed this code in Matlab.I don't know why results have '_Z'.I have never seen them before. syms m1 m2 c a l ; g=10; M=[m1+m2 m2*l 0 0 0 0;0 0 m1+m2 m2*l 0 0;0 0 0 0 m1+m2 m2*l; 1 l 0 0 0 0;0 0 1 l 0 0;0 0 0 0 1 l ] K=[2*c 0 -c 0 0 0;-c 0 2*c 0 -c 0;0 0 -c 0 c 0; 0 g 0 0 0 0;0 0 0 g 0 0;0 0 0 0 0 g] A=inv(M)*K; [V,D]=eig(A); omega1=sqrt(D(1,1)); omega3=sqrt(D(3,3)) omega5=sqrt(D(5,5)); And results return: omega3 = RootOf(_Z^6*l^3*m1^3+(-30*l^2*m1^2*m2-30*l^2*m1^3-5*l^3 *m1^2*c)*_Z^5+(100*l^2*m1*c*m2+6*l^3*m1*c^2+150*l^2 *m1^2*c+600*l*m1^2*m2+300*l*m1*m2^2+300*m1^3*l)*_Z^4 +(-60*c^2*l^2*m2-2000*c*l*m1*m2-500*c*l*m2^2-180*m1*c^2*l^2-1500 *m1^2*c*l-1000*m1^3-3000*m1^2*m2-3000*m1*m2^2-1000 *m2^3-c^3*l^3)*_Z^3+(5000*m1^2*c+5000*m2^2*c+10000*m2*m1*c +30*c^3*l^2+1200*c^2*m2*l+1800*c^2*l*m1)*_Z^2+(-6000*c^2*m1-6000 *c^2*m2-300*c^3*l)*_Z+1000*c^3,index = 3)^(1/2) Everyone help me,please! Th(a)nh cô nương.
From: Steven Lord on 28 Jan 2010 09:35 "TRan Thanh" <xt2005_1208dx(a)yahaoo.com> wrote in message news:hjrp8s$pu9$1(a)fred.mathworks.com... >I writed this code in Matlab.I don't know why results have '_Z'.I have >never seen them before. > > syms m1 m2 c a l ; > g=10; > M=[m1+m2 m2*l 0 0 0 0;0 0 m1+m2 m2*l 0 0;0 0 0 0 m1+m2 m2*l; 1 l 0 0 0 0;0 > 0 1 l 0 0;0 0 0 0 1 l ] > K=[2*c 0 -c 0 0 0;-c 0 2*c 0 -c 0;0 0 -c 0 c 0; 0 g 0 0 0 0;0 0 0 g 0 0;0 > 0 0 0 0 g] > A=inv(M)*K; > [V,D]=eig(A); > omega1=sqrt(D(1,1)); > omega3=sqrt(D(3,3)) > omega5=sqrt(D(5,5)); > And results return: > omega3 = > > RootOf(_Z^6*l^3*m1^3+(-30*l^2*m1^2*m2-30*l^2*m1^3-5*l^3 > *m1^2*c)*_Z^5+(100*l^2*m1*c*m2+6*l^3*m1*c^2+150*l^2 > *m1^2*c+600*l*m1^2*m2+300*l*m1*m2^2+300*m1^3*l)*_Z^4 > +(-60*c^2*l^2*m2-2000*c*l*m1*m2-500*c*l*m2^2-180*m1*c^2*l^2-1500 > *m1^2*c*l-1000*m1^3-3000*m1^2*m2-3000*m1*m2^2-1000 > *m2^3-c^3*l^3)*_Z^3+(5000*m1^2*c+5000*m2^2*c+10000*m2*m1*c > +30*c^3*l^2+1200*c^2*m2*l+1800*c^2*l*m1)*_Z^2+(-6000*c^2*m1-6000 > *c^2*m2-300*c^3*l)*_Z+1000*c^3,index = 3)^(1/2) You're trying to symbolically compute the eigenvalues of a 6-by-6 symbolic matrix. That would require solving a 6th order polynomial. Galois proved that there's no general formula for the solutions to a general 6th order polynomial in radicals, so the Symbolic Math Toolbox returns a result that indicates that the result you're looking for is the root of a 6th order polynomial in a "placeholder" variable _Z. If you were to substitute values into that expression for your parameters (m1, m2, c, a, and l) you could then try to evaluate this using DOUBLE or VPA to obtain a numeric result. -- Steve Lord slord(a)mathworks.com comp.soft-sys.matlab (CSSM) FAQ: http://matlabwiki.mathworks.com/MATLAB_FAQ
|
Pages: 1 Prev: C mex file segmentation fault Next: How to set the relative order of figure objects |