Prev: how to find the length and diameter
Next: Who is Jesus
From: W. eWatson on 26 Jun 2010 13:17 Let my simplify matters here, and just concentrate on the central point. I'm looking at a paper that deals with 5 NL (nonlinear) equations and 8 unknown parameters. A. a=a0+arctan((y-y0)/(x-x0) B. z=V*r+S*e**(D*r) r=sqrt((x-x0)**2+(y-y0)**2) and C. cos(z)=cos(u)*cos(z)-sin(u)*sin(ep)*cos(b) sin(a-E) = sin(b)*sin(u)/sin(z) a0, xo, y0, V, S, D, ep, and E are the parameters. Data is available for the variables. What I've presented is probably a bit difficult to understand without a good optics understanding, but my question is something like is this commonly done to solve a system of NLLSQ? It looks a bit wild. It seems to me he first solves for parameters in A, then uses them in B, then those in C. I guess it makes sense, but is such a method often successful? Comments?
From: John D'Errico on 26 Jun 2010 13:43 "W. eWatson" <wolftracks(a)invalid.com> wrote in message <i05co3$mi4$1(a)news.eternal-september.org>... > Let my simplify matters here, and just concentrate on the central point. > > I'm looking at a paper that deals with 5 NL (nonlinear) equations and 8 > unknown parameters. > > A. a=a0+arctan((y-y0)/(x-x0) > B. z=V*r+S*e**(D*r) > r=sqrt((x-x0)**2+(y-y0)**2) > and > C. cos(z)=cos(u)*cos(z)-sin(u)*sin(ep)*cos(b) > sin(a-E) = sin(b)*sin(u)/sin(z) > > a0, xo, y0, V, S, D, ep, and E are the parameters. Data is available for > the variables. > > What I've presented is probably a bit difficult to understand without a > good optics understanding, but my question is something like is this > commonly done to solve a system of NLLSQ? It looks a bit wild. It seems > to me he first solves for parameters in A, then uses them in B, then > those in C. I guess it makes sense, but is such a method often > successful? Comments? It may work. If this author has used the scheme, then apparently he did make it work, at least on one of his problems. Is it a stable procedure? Probably not terribly so. You would need to verify the results from each step to decide that convergence to a reasonable solution was obtained for that step. And remember that each step returns only a result that has a convergence tolerance on it. So the second step will be a bit fuzzier than the first, and the third step the fuzziest of all. But done with care, with good starting values, it might work. John
|
Pages: 1 Prev: how to find the length and diameter Next: Who is Jesus |