From: What you are reading is Philosophy and P Versus NP. on
On Apr 1, 4:10 am, master1729 <tommy1...(a)gmail.com> wrote:
> > Brown Bannister wrote:
> > >    The "Poor Man's Prime conjecture" guesses all
> > prime numbers are not
> > > divisible by 2, 3, 4, 5, 6, 7, 8, 9, or 10 and
> > >    the "Poor Man's Prime" conjecture guesses a
> > prime number is not
> > > divisible by 2, 3, 4, 5, 6, 7, 8, 9, or 10.
>
> > >    1. What can we tell the poor man about his
> > guess?
>
> > The poor man is deluded and thinks all prime numbers
> > are 11 or greater.
>
> > >    2. What are the implications of the poor man's
> > guess being true
> > > versus what are the implications of the poor man's
> > >       guess being false?
>
> > Largely irrelevant. It is so obviously wrong.
>
> > A pretty feeble April Fools joke.
>
> its not a joke , its just " musatov math ".
>
> euh .. ok , so it is a joke , but musatov math is a joke everyday , not just on april the 1st.
>
>
>
>
>
> > Regards,
> > Martin Brown- Hide quoted text -
>
> - Show quoted text -- Hide quoted text -
>
> - Show quoted text -

If my math is a joke every day then what are you doing complaining?

h1>Items to sort</h1><form action="response.lasso"
method="post"><table> <tr> <th>ORDER</th> <th>ITEM</
th> </tr>[iterate: $items, local:'item'] <tr> <td><select
name="order"> [loop: $order] [local:'loop_count'
= loop_count] // put this on one line <option
value="[#loop_count->(setformat: -padchar='0', -padding=3) &
] [(#item->value->(find:'order') ==
loop_count) ? '1' | (#item->value-
>(find:'order') < loop_count) ? '2' | '0']_[#item-
>name]" [(#item->value->(find:'order') == loop_count) ? '
SELECTED']>[loop_count] [/loop] </select>
</td> <td>[#item->value->(find:'name')]</td> </tr>[/
iterate]</table><input type="submit" name="submit" value="Update"></
form>
From: Ostap S. B. M. Bender Jr. on
On Mar 31, 10:40 pm, Brown Bannister <brownbannis...(a)beatlesfan.com>
wrote:
>    The "Poor Man's Prime conjecture" guesses all prime numbers are not
> divisible by 2, 3, 4, 5, 6, 7, 8, 9, or 10 and
>    the "Poor Man's Prime" conjecture guesses a prime number is not
> divisible by 2, 3, 4, 5, 6, 7, 8, 9, or 10.
>
>    1. What can we tell the poor man about his guess?

The second conjecture is TRUE. Example: 11.

The first conjecture can be TRUE or FALSE, depending on the
interpretation of "or" in "2, 3, 4, 5, 6, 7, 8, 9, or 10"

>    2. What are the implications of the poor man's guess being true
> versus what are the implications of the poor man's
>       guess being false?

That English is not a precise language.