From: Nasser M. Abbasi on 11 Apr 2010 04:32 On Apr 9, 12:35 am, "Ted Ersek" <ers...(a)md.metrocast.net> wrote: > What does Mathematica version 6 give when the following is evaluated? > Here (x) is 'zero' with 80 digits of accuracy. > > x = SetAccuracy[0, 80]; > { Abs[x] < 10^-900, Positive[x], Negative[x], NonPositive[x], > NonNegative[x] }//InputForm > > {Sign[x], SetPrecision[x, 20], Sign[0], KroneckerDelta[x] } > > UnitStep[{0, 0.0, x}] > > Unitize[{0, 0.0, x}] > > ---------------------- > I have version 7, but not version 6. I am finishing an update to my > RootSearch package. Knowing what version 6 returns above will help me mak= e > one version of this package that is optimized for Mathematica versions 6 = and > 7. > > Thanks, > Ted Ersek In[1]:= $Version Out[1]= 6.0 for Microsoft Windows (32-bit) (June 19, 2007) In[13]:= ClearAll["Global`*"] x=SetAccuracy[0,80]; {Abs[x]<10^-900,Positive[x],Negative[x],NonPositive[x],NonNegative[x]}// InputForm {Sign[x],SetPrecision[x,20],Sign[0],KroneckerDelta[x]} UnitStep[{0,0.0,x}] Out[16]= {0,0,0,1} Out[17]= {1,1,1} {False, Positive[0``80.], Negative[0``80.], NonPositive[0``80.], NonNegative[0``80.]} ========================== ====== In[1]:= $Version Out[1]= "5.2 for Microsoft Windows (June 20, 2005)" In[6]:= x = SetAccuracy[0, 80]; InputForm[{Abs[x] < 10^(-900), Positive[x], Negative[x], NonPositive[x], NonNegative[x]}] {Sign[x], SetPrecision[x, 20], Sign[0], KroneckerDelta[x]} UnitStep[{0, 0., x}] Unitize[{0, 0., x}] Out[8]= {0, 0, 0, 1} Out[9]= {1, 1, 1} Out[10]= Unitize[{0, 0., 0``80.}] {False, Positive[0``80.], Negative[0``80.], NonPositive[0``80.], NonNegative[0``80.]} --Nasser
|
Pages: 1 Prev: Change of function in an ODE Next: Retrieving orphaned code |