Prev: Become the Best Project Manager
Next: basic question
From: sid on 15 Jun 2010 05:06 Hi, I am trying to find out the covariance of weighted (aggregated) data. I want help with the code which gives me the covariance matrix. I have written the following code to calculate the covariance but I am not able to create any matrix. Please help me with the code. I have also attached a small sample data set. CODE USED: proc corr data =thesis.weekwt3 COV NOCORR vardef=weight outp=thesis.weekwt4; by sensor_id s_hour am_pm; weight volume; var traveltime; run; SAMPLE DATA SET: sensor_id date s_hour s_min s_sec am_pm lane volume speed traveltime direction min_class 110 2/4/2008 7 0 30 am 1 17 56 70.71428571 1 1 110 2/4/2008 7 0 30 am 2 15 44 90 1 1 110 2/4/2008 7 0 30 am 3 17 55 72 . 1 110 2/4/2008 7 0 30 am 4 13 43 92.09302326 . 1 110 2/4/2008 7 1 0 am 1 14 60 66 1 1 110 2/4/2008 7 1 0 am 2 21 43 92.09302326 1 1 110 2/4/2008 7 1 0 am 3 16 56 70.71428571 . 1 110 2/4/2008 7 1 0 am 4 12 66 60 . 1 110 2/4/2008 7 1 30 am 1 11 54 73.33333333 1 1 110 2/4/2008 7 1 30 am 2 23 39 101.5384615 1 1 110 2/4/2008 7 1 30 am 3 3 46 86.08695652 . 1 110 2/4/2008 7 1 30 am 4 15 51 77.64705882 . 1 110 2/4/2008 7 2 0 am 1 7 50 79.2 1 1 110 2/4/2008 7 2 0 am 2 22 60 66 1 1 110 2/4/2008 7 2 0 am 3 11 39 101.5384615 . 1 110 2/4/2008 7 2 0 am 4 2 65 60.92307692 . 1 110 2/4/2008 7 2 30 am 1 13 57 69.47368421 1 1 110 2/4/2008 7 2 30 am 2 9 64 61.875 1 1 110 2/4/2008 7 2 30 am 3 10 43 92.09302326 . 1 110 2/4/2008 7 2 30 am 4 12 39 101.5384615 . 1 110 2/4/2008 7 3 0 am 1 13 43 92.09302326 1 1 110 2/4/2008 7 3 0 am 2 11 60 66 1 1 110 2/4/2008 7 3 0 am 3 15 43 92.09302326 . 1 110 2/4/2008 7 3 0 am 4 16 56 70.71428571 . 1 110 2/4/2008 7 3 30 am 1 12 66 60 1 1 110 2/4/2008 7 3 30 am 2 11 55 72 1 1 110 2/4/2008 7 3 30 am 3 15 44 90 . 1 110 2/4/2008 7 3 30 am 4 33 36 110 . 1 110 2/4/2008 7 4 0 am 1 2 56 70.71428571 1 1 110 2/4/2008 7 4 0 am 2 9 57 69.47368421 1 1 110 2/4/2008 7 4 0 am 3 10 51 77.64705882 . 1 110 2/4/2008 7 4 0 am 4 17 57 69.47368421 . 1 110 2/4/2008 7 4 30 am 1 14 65 60.92307692 1 1 110 2/4/2008 7 4 30 am 2 11 46 86.08695652 1 1 110 2/4/2008 7 4 30 am 3 21 49 80.81632653 . 1 110 2/4/2008 7 4 30 am 4 7 66 60 . 1 110 2/4/2008 7 5 0 am 1 13 54 73.33333333 1 1 110 2/4/2008 7 5 0 am 2 15 49 80.81632653 1 1 110 2/4/2008 7 5 0 am 3 17 39 101.5384615 . 1 110 2/4/2008 7 5 0 am 4 12 54 73.33333333 . 1 110 2/4/2008 7 5 30 am 1 14 56 70.71428571 1 1 110 2/4/2008 7 5 30 am 2 16 44 90 1 1 110 2/4/2008 7 5 30 am 3 11 55 72 . 1 110 2/4/2008 7 5 30 am 4 12 43 92.09302326 . 1 110 2/4/2008 7 6 0 am 1 13 60 66 1 2 110 2/4/2008 7 6 0 am 2 14 43 92.09302326 1 2 110 2/4/2008 7 6 0 am 3 21 56 70.71428571 . 2 110 2/4/2008 7 6 0 am 4 14 66 60 . 2 110 2/4/2008 7 6 30 am 1 16 39 101.5384615 1 2 110 2/4/2008 7 6 30 am 2 12 46 86.08695652 1 2 110 2/4/2008 7 6 30 am 3 9 56 70.71428571 . 2 110 2/4/2008 7 6 30 am 4 12 44 90 . 2 110 2/4/2008 7 7 0 am 1 10 35 113.1428571 1 2 110 2/4/2008 7 7 0 am 2 7 49 80.81632653 1 2 110 2/4/2008 7 7 0 am 3 22 66 60 . 2 110 2/4/2008 7 7 0 am 4 13 60 66 . 2 110 2/4/2008 7 7 30 am 1 14 53 74.71698113 1 2 110 2/4/2008 7 7 30 am 2 11 34 116.4705882 1 2 110 2/4/2008 7 7 30 am 3 22 48 82.5 . 2 110 2/4/2008 7 7 30 am 4 13 60 66 . 2 110 2/4/2008 7 8 0 am 1 6 56 70.71428571 1 2 110 2/4/2008 7 8 0 am 2 9 44 90 1 2 110 2/4/2008 7 8 0 am 3 10 55 72 . 2 110 2/4/2008 7 8 0 am 4 23 43 92.09302326 . 2 110 2/4/2008 7 8 30 am 1 15 60 66 1 2 110 2/4/2008 7 8 30 am 2 24 43 92.09302326 1 2 110 2/4/2008 7 8 30 am 3 22 56 70.71428571 . 2 110 2/4/2008 7 8 30 am 4 11 66 60 . 2 110 2/4/2008 7 9 0 am 1 14 45 88 1 2 110 2/4/2008 7 9 0 am 2 12 55 72 1 2 110 2/4/2008 7 9 0 am 3 13 46 86.08695652 . 2 110 2/4/2008 7 9 0 am 4 18 51 77.64705882 . 2 234 2/4/2008 7 0 30 am 1 21 35 72 1 1 234 2/4/2008 7 0 30 am 2 14 49 51.42857143 1 1 234 2/4/2008 7 0 30 am 3 16 66 38.18181818 . 1 234 2/4/2008 7 0 30 am 4 12 60 42 . 1 234 2/4/2008 7 1 0 am 1 9 53 47.54716981 1 1 234 2/4/2008 7 1 0 am 2 12 34 74.11764706 1 1 234 2/4/2008 7 1 0 am 3 10 48 52.5 . 1 234 2/4/2008 7 1 0 am 4 7 60 42 . 1 234 2/4/2008 7 1 30 am 1 22 56 45 1 1 234 2/4/2008 7 1 30 am 2 13 44 57.27272727 1 1 234 2/4/2008 7 1 30 am 3 14 55 45.81818182 . 1 234 2/4/2008 7 1 30 am 4 11 43 58.60465116 . 1 234 2/4/2008 7 2 0 am 1 14 60 42 1 1 234 2/4/2008 7 2 0 am 2 13 43 58.60465116 1 1 234 2/4/2008 7 2 0 am 3 17 56 45 . 1 234 2/4/2008 7 2 0 am 4 7 66 38.18181818 . 1 234 2/4/2008 7 2 30 am 1 9 45 56 1 1 234 2/4/2008 7 2 30 am 2 10 55 45.81818182 1 1 234 2/4/2008 7 2 30 am 3 14 46 54.7826087 . 1 234 2/4/2008 7 2 30 am 4 13 51 49.41176471 . 1 234 2/4/2008 7 3 0 am 1 11 51 49.41176471 1 1 234 2/4/2008 7 3 0 am 2 13 50 50.4 1 1 234 2/4/2008 7 3 0 am 3 6 60 42 . 1 234 2/4/2008 7 3 0 am 4 9 39 64.61538462 . 1 234 2/4/2008 7 3 30 am 1 10 65 38.76923077 1 1 234 2/4/2008 7 3 30 am 2 23 57 44.21052632 1 1 234 2/4/2008 7 3 30 am 3 15 64 39.375 . 1 234 2/4/2008 7 3 30 am 4 24 43 58.60465116 . 1 234 2/4/2008 7 4 0 am 1 22 39 64.61538462 1 1 234 2/4/2008 7 4 0 am 2 11 43 58.60465116 1 1 234 2/4/2008 7 4 0 am 3 14 60 42 . 1 234 2/4/2008 7 4 0 am 4 12 43 58.60465116 . 1 234 2/4/2008 7 4 30 am 1 13 56 45 1 1 234 2/4/2008 7 4 30 am 2 18 66 38.18181818 1 1 234 2/4/2008 7 4 30 am 3 17 55 45.81818182 . 1 234 2/4/2008 7 4 30 am 4 15 43 58.60465116 . 1 234 2/4/2008 7 5 0 am 1 17 60 42 1 1 234 2/4/2008 7 5 0 am 2 13 43 58.60465116 1 1 234 2/4/2008 7 5 0 am 3 14 56 45 . 1 234 2/4/2008 7 5 0 am 4 21 66 38.18181818 . 1 234 2/4/2008 7 5 30 am 1 16 54 46.66666667 1 1 234 2/4/2008 7 5 30 am 2 12 39 64.61538462 1 1 234 2/4/2008 7 5 30 am 3 11 46 54.7826087 . 1 234 2/4/2008 7 5 30 am 4 23 51 49.41176471 . 1 234 2/4/2008 7 6 0 am 1 3 51 49.41176471 1 2 234 2/4/2008 7 6 0 am 2 15 50 50.4 1 2 234 2/4/2008 7 6 0 am 3 7 60 42 . 2 234 2/4/2008 7 6 0 am 4 22 39 64.61538462 . 2 234 2/4/2008 7 6 30 am 1 11 65 38.76923077 1 2 234 2/4/2008 7 6 30 am 2 2 57 44.21052632 1 2 234 2/4/2008 7 6 30 am 3 13 64 39.375 . 2 234 2/4/2008 7 6 30 am 4 9 43 58.60465116 . 2 234 2/4/2008 7 7 0 am 1 10 39 64.61538462 1 2 234 2/4/2008 7 7 0 am 2 15 43 58.60465116 1 2 234 2/4/2008 7 7 0 am 3 16 49 51.42857143 . 2 234 2/4/2008 7 7 0 am 4 12 66 38.18181818 . 2 234 2/4/2008 7 7 30 am 1 11 54 46.66666667 1 2 234 2/4/2008 7 7 30 am 2 15 49 51.42857143 1 2 234 2/4/2008 7 7 30 am 3 33 39 64.61538462 . 2 234 2/4/2008 7 7 30 am 4 2 54 46.66666667 . 2 234 2/4/2008 7 8 0 am 1 9 56 45 1 2 234 2/4/2008 7 8 0 am 2 10 44 57.27272727 1 2 234 2/4/2008 7 8 0 am 3 17 55 45.81818182 . 2 234 2/4/2008 7 8 0 am 4 15 56 45 . 2 234 2/4/2008 7 8 30 am 1 11 46 54.7826087 1 2 234 2/4/2008 7 8 30 am 2 10 49 51.42857143 1 2 234 2/4/2008 7 8 30 am 3 18 53 47.54716981 . 2 234 2/4/2008 7 8 30 am 4 9 39 64.61538462 . 2 234 2/4/2008 7 9 0 am 1 14 68 37.05882353 1 2 234 2/4/2008 7 9 0 am 2 8 61 41.31147541 1 2 234 2/4/2008 7 9 0 am 3 16 57 44.21052632 . 2 234 2/4/2008 7 9 0 am 4 9 47 53.61702128 . 2
From: sid on 15 Jun 2010 13:14 On Jun 15, 4:06 am, sid <siddharth8...(a)gmail.com> wrote: > Hi, > I am trying to find out the covariance of weighted (aggregated) data. > I want help with the code which gives me the covariance matrix. I have > written the following code to calculate the covariance but I am not > able to create any matrix. Please help me with the code. I have also > attached a small sample data set. > > CODE USED: > proc corr data =thesis.weekwt3 COV NOCORR vardef=weight > outp=thesis.weekwt4; > by sensor_id s_hour am_pm; > weight volume; > var traveltime; > run; > > SAMPLE DATA SET: > sensor_id date s_hour s_min s_sec am_pm lane volume speed traveltime > direction min_class > 110 2/4/2008 7 0 30 am 1 17 56 70.71428571 1 1 > 110 2/4/2008 7 0 30 am 2 15 44 90 1 1 > 110 2/4/2008 7 0 30 am 3 17 55 72 . 1 > 110 2/4/2008 7 0 30 am 4 13 43 92.09302326 . 1 > 110 2/4/2008 7 1 0 am 1 14 60 66 1 1 > 110 2/4/2008 7 1 0 am 2 21 43 92.09302326 1 1 > 110 2/4/2008 7 1 0 am 3 16 56 70.71428571 . 1 > 110 2/4/2008 7 1 0 am 4 12 66 60 . 1 > 110 2/4/2008 7 1 30 am 1 11 54 73.33333333 1 1 > 110 2/4/2008 7 1 30 am 2 23 39 101.5384615 1 1 > 110 2/4/2008 7 1 30 am 3 3 46 86.08695652 . 1 > 110 2/4/2008 7 1 30 am 4 15 51 77.64705882 . 1 > 110 2/4/2008 7 2 0 am 1 7 50 79.2 1 1 > 110 2/4/2008 7 2 0 am 2 22 60 66 1 1 > 110 2/4/2008 7 2 0 am 3 11 39 101.5384615 . 1 > 110 2/4/2008 7 2 0 am 4 2 65 60.92307692 . 1 > 110 2/4/2008 7 2 30 am 1 13 57 69.47368421 1 1 > 110 2/4/2008 7 2 30 am 2 9 64 61.875 1 1 > 110 2/4/2008 7 2 30 am 3 10 43 92.09302326 . 1 > 110 2/4/2008 7 2 30 am 4 12 39 101.5384615 . 1 > 110 2/4/2008 7 3 0 am 1 13 43 92.09302326 1 1 > 110 2/4/2008 7 3 0 am 2 11 60 66 1 1 > 110 2/4/2008 7 3 0 am 3 15 43 92.09302326 . 1 > 110 2/4/2008 7 3 0 am 4 16 56 70.71428571 . 1 > 110 2/4/2008 7 3 30 am 1 12 66 60 1 1 > 110 2/4/2008 7 3 30 am 2 11 55 72 1 1 > 110 2/4/2008 7 3 30 am 3 15 44 90 . 1 > 110 2/4/2008 7 3 30 am 4 33 36 110 . 1 > 110 2/4/2008 7 4 0 am 1 2 56 70.71428571 1 1 > 110 2/4/2008 7 4 0 am 2 9 57 69.47368421 1 1 > 110 2/4/2008 7 4 0 am 3 10 51 77.64705882 . 1 > 110 2/4/2008 7 4 0 am 4 17 57 69.47368421 . 1 > 110 2/4/2008 7 4 30 am 1 14 65 60.92307692 1 1 > 110 2/4/2008 7 4 30 am 2 11 46 86.08695652 1 1 > 110 2/4/2008 7 4 30 am 3 21 49 80.81632653 . 1 > 110 2/4/2008 7 4 30 am 4 7 66 60 . 1 > 110 2/4/2008 7 5 0 am 1 13 54 73.33333333 1 1 > 110 2/4/2008 7 5 0 am 2 15 49 80.81632653 1 1 > 110 2/4/2008 7 5 0 am 3 17 39 101.5384615 . 1 > 110 2/4/2008 7 5 0 am 4 12 54 73.33333333 . 1 > 110 2/4/2008 7 5 30 am 1 14 56 70.71428571 1 1 > 110 2/4/2008 7 5 30 am 2 16 44 90 1 1 > 110 2/4/2008 7 5 30 am 3 11 55 72 . 1 > 110 2/4/2008 7 5 30 am 4 12 43 92.09302326 . 1 > 110 2/4/2008 7 6 0 am 1 13 60 66 1 2 > 110 2/4/2008 7 6 0 am 2 14 43 92.09302326 1 2 > 110 2/4/2008 7 6 0 am 3 21 56 70.71428571 . 2 > 110 2/4/2008 7 6 0 am 4 14 66 60 . 2 > 110 2/4/2008 7 6 30 am 1 16 39 101.5384615 1 2 > 110 2/4/2008 7 6 30 am 2 12 46 86.08695652 1 2 > 110 2/4/2008 7 6 30 am 3 9 56 70.71428571 . 2 > 110 2/4/2008 7 6 30 am 4 12 44 90 . 2 > 110 2/4/2008 7 7 0 am 1 10 35 113.1428571 1 2 > 110 2/4/2008 7 7 0 am 2 7 49 80.81632653 1 2 > 110 2/4/2008 7 7 0 am 3 22 66 60 . 2 > 110 2/4/2008 7 7 0 am 4 13 60 66 . 2 > 110 2/4/2008 7 7 30 am 1 14 53 74.71698113 1 2 > 110 2/4/2008 7 7 30 am 2 11 34 116.4705882 1 2 > 110 2/4/2008 7 7 30 am 3 22 48 82.5 . 2 > 110 2/4/2008 7 7 30 am 4 13 60 66 . 2 > 110 2/4/2008 7 8 0 am 1 6 56 70.71428571 1 2 > 110 2/4/2008 7 8 0 am 2 9 44 90 1 2 > 110 2/4/2008 7 8 0 am 3 10 55 72 . 2 > 110 2/4/2008 7 8 0 am 4 23 43 92.09302326 . 2 > 110 2/4/2008 7 8 30 am 1 15 60 66 1 2 > 110 2/4/2008 7 8 30 am 2 24 43 92.09302326 1 2 > 110 2/4/2008 7 8 30 am 3 22 56 70.71428571 . 2 > 110 2/4/2008 7 8 30 am 4 11 66 60 . 2 > 110 2/4/2008 7 9 0 am 1 14 45 88 1 2 > 110 2/4/2008 7 9 0 am 2 12 55 72 1 2 > 110 2/4/2008 7 9 0 am 3 13 46 86.08695652 . 2 > 110 2/4/2008 7 9 0 am 4 18 51 77.64705882 . 2 > 234 2/4/2008 7 0 30 am 1 21 35 72 1 1 > 234 2/4/2008 7 0 30 am 2 14 49 51.42857143 1 1 > 234 2/4/2008 7 0 30 am 3 16 66 38.18181818 . 1 > 234 2/4/2008 7 0 30 am 4 12 60 42 . 1 > 234 2/4/2008 7 1 0 am 1 9 53 47.54716981 1 1 > 234 2/4/2008 7 1 0 am 2 12 34 74.11764706 1 1 > 234 2/4/2008 7 1 0 am 3 10 48 52.5 . 1 > 234 2/4/2008 7 1 0 am 4 7 60 42 . 1 > 234 2/4/2008 7 1 30 am 1 22 56 45 1 1 > 234 2/4/2008 7 1 30 am 2 13 44 57.27272727 1 1 > 234 2/4/2008 7 1 30 am 3 14 55 45.81818182 . 1 > 234 2/4/2008 7 1 30 am 4 11 43 58.60465116 . 1 > 234 2/4/2008 7 2 0 am 1 14 60 42 1 1 > 234 2/4/2008 7 2 0 am 2 13 43 58.60465116 1 1 > 234 2/4/2008 7 2 0 am 3 17 56 45 . 1 > 234 2/4/2008 7 2 0 am 4 7 66 38.18181818 . 1 > 234 2/4/2008 7 2 30 am 1 9 45 56 1 1 > 234 2/4/2008 7 2 30 am 2 10 55 45.81818182 1 1 > 234 2/4/2008 7 2 30 am 3 14 46 54.7826087 . 1 > 234 2/4/2008 7 2 30 am 4 13 51 49.41176471 . 1 > 234 2/4/2008 7 3 0 am 1 11 51 49.41176471 1 1 > 234 2/4/2008 7 3 0 am 2 13 50 50.4 1 1 > 234 2/4/2008 7 3 0 am 3 6 60 42 . 1 > 234 2/4/2008 7 3 0 am 4 9 39 64.61538462 . 1 > 234 2/4/2008 7 3 30 am 1 10 65 38.76923077 1 1 > 234 2/4/2008 7 3 30 am 2 23 57 44.21052632 1 1 > 234 2/4/2008 7 3 30 am 3 15 64 39.375 . 1 > 234 2/4/2008 7 3 30 am 4 24 43 58.60465116 . 1 > 234 2/4/2008 7 4 0 am 1 22 39 64.61538462 1 1 > 234 2/4/2008 7 4 0 am 2 11 43 58.60465116 1 1 > 234 2/4/2008 7 4 0 am 3 14 60 42 . 1 > 234 2/4/2008 7 4 0 am 4 12 43 58.60465116 . 1 > 234 2/4/2008 7 4 30 am 1 13 56 45 1 1 > 234 2/4/2008 7 4 30 am 2 18 66 38.18181818 1 1 > 234 2/4/2008 7 4 30 am 3 17 55 45.81818182 . 1 > 234 2/4/2008 7 4 30 am 4 15 43 58.60465116 . 1 > 234 2/4/2008 7 5 0 am 1 17 60 42 1 1 > 234 2/4/2008 7 5 0 am 2 13 43 58.60465116 1 1 > 234 2/4/2008 7 5 0 am 3 14 56 45 . 1 > 234 2/4/2008 7 5 0 am 4 21 66 38.18181818 . 1 > 234 2/4/2008 7 5 30 am 1 16 54 46.66666667 1 1 > 234 2/4/2008 7 5 30 am 2 12 39 64.61538462 1 1 > 234 2/4/2008 7 5 30 am 3 11 46 54.7826087 . 1 > 234 2/4/2008 7 5 30 am 4 23 51 49.41176471 . 1 > 234 2/4/2008 7 6 0 am 1 3 51 49.41176471 1 2 > 234 2/4/2008 7 6 0 am 2 15 50 50.4 1 2 > 234 2/4/2008 7 6 0 am 3 7 60 42 . 2 > 234 2/4/2008 7 6 0 am 4 22 39 64.61538462 . 2 > 234 2/4/2008 7 6 30 am 1 11 65 38.76923077 1 2 > 234 2/4/2008 7 6 30 am 2 2 57 44.21052632 1 2 > 234 2/4/2008 7 6 30 am 3 13 64 39.375 . 2 > 234 2/4/2008 7 6 30 am 4 9 43 58.60465116 . 2 > 234 2/4/2008 7 7 0 am 1 10 39 64.61538462 1 2 > 234 2/4/2008 7 7 0 am 2 15 43 58.60465116 1 2 > 234 2/4/2008 7 7 0 am 3 16 49 51.42857143 . 2 > 234 2/4/2008 7 7 0 am 4 12 66 38.18181818 . 2 > 234 2/4/2008 7 7 30 am 1 11 54 46.66666667 1 2 > 234 2/4/2008 7 7 30 am 2 15 49 51.42857143 1 2 > 234 2/4/2008 7 7 30 am 3 33 39 64.61538462 . 2 > 234 2/4/2008 7 7 30 am 4 2 54 46.66666667 . 2 > 234 2/4/2008 7 8 0 am 1 9 56 45 1 2 > 234 2/4/2008 7 8 0 am 2 10 44 57.27272727 1 2 > 234 2/4/2008 7 8 0 am 3 17 55 45.81818182 . 2 > 234 2/4/2008 7 8 0 am 4 15 56 45 . 2 > 234 2/4/2008 7 8 30 am 1 11 46 54.7826087 1 2 > 234 2/4/2008 7 8 30 am 2 10 49 51.42857143 1 2 > 234 2/4/2008 7 8 30 am 3 18 53 47.54716981 . 2 > 234 2/4/2008 7 8 30 am 4 9 39 64.61538462 . 2 > 234 2/4/2008 7 9 0 am 1 14 68 37.05882353 1 2 > 234 2/4/2008 7 9 0 am 2 8 61 41.31147541 1 2 > 234 2/4/2008 7 9 0 am 3 16 57 44.21052632 . 2 > 234 2/4/2008 7 9 0 am 4 9 47 53.61702128 . 2 i actually want the covariance matrix for the traveltimes of the 2 sensor id's. weight is the volume. thanks.
From: sid on 24 Jun 2010 03:44 On Jun 15, 12:14 pm, sid <siddharth8...(a)gmail.com> wrote: > On Jun 15, 4:06 am, sid <siddharth8...(a)gmail.com> wrote: > > > Hi, > > I am trying to find out the covariance of weighted (aggregated) data. > > I want help with the code which gives me the covariance matrix. I have > > written the following code to calculate the covariance but I am not > > able to create any matrix. Please help me with the code. I have also > > attached a small sample data set. > > > CODE USED: > > proc corr data =thesis.weekwt3 COV NOCORR vardef=weight > > outp=thesis.weekwt4; > > by sensor_id s_hour am_pm; > > weight volume; > > var traveltime; > > run; > > > SAMPLE DATA SET: > > sensor_id date s_hour s_min s_sec am_pm lane volume speed traveltime > > direction min_class > > 110 2/4/2008 7 0 30 am 1 17 56 70.71428571 1 1 > > 110 2/4/2008 7 0 30 am 2 15 44 90 1 1 > > 110 2/4/2008 7 0 30 am 3 17 55 72 . 1 > > 110 2/4/2008 7 0 30 am 4 13 43 92.09302326 . 1 > > 110 2/4/2008 7 1 0 am 1 14 60 66 1 1 > > 110 2/4/2008 7 1 0 am 2 21 43 92.09302326 1 1 > > 110 2/4/2008 7 1 0 am 3 16 56 70.71428571 . 1 > > 110 2/4/2008 7 1 0 am 4 12 66 60 . 1 > > 110 2/4/2008 7 1 30 am 1 11 54 73.33333333 1 1 > > 110 2/4/2008 7 1 30 am 2 23 39 101.5384615 1 1 > > 110 2/4/2008 7 1 30 am 3 3 46 86.08695652 . 1 > > 110 2/4/2008 7 1 30 am 4 15 51 77.64705882 . 1 > > 110 2/4/2008 7 2 0 am 1 7 50 79.2 1 1 > > 110 2/4/2008 7 2 0 am 2 22 60 66 1 1 > > 110 2/4/2008 7 2 0 am 3 11 39 101.5384615 . 1 > > 110 2/4/2008 7 2 0 am 4 2 65 60.92307692 . 1 > > 110 2/4/2008 7 2 30 am 1 13 57 69.47368421 1 1 > > 110 2/4/2008 7 2 30 am 2 9 64 61.875 1 1 > > 110 2/4/2008 7 2 30 am 3 10 43 92.09302326 . 1 > > 110 2/4/2008 7 2 30 am 4 12 39 101.5384615 . 1 > > 110 2/4/2008 7 3 0 am 1 13 43 92.09302326 1 1 > > 110 2/4/2008 7 3 0 am 2 11 60 66 1 1 > > 110 2/4/2008 7 3 0 am 3 15 43 92.09302326 . 1 > > 110 2/4/2008 7 3 0 am 4 16 56 70.71428571 . 1 > > 110 2/4/2008 7 3 30 am 1 12 66 60 1 1 > > 110 2/4/2008 7 3 30 am 2 11 55 72 1 1 > > 110 2/4/2008 7 3 30 am 3 15 44 90 . 1 > > 110 2/4/2008 7 3 30 am 4 33 36 110 . 1 > > 110 2/4/2008 7 4 0 am 1 2 56 70.71428571 1 1 > > 110 2/4/2008 7 4 0 am 2 9 57 69.47368421 1 1 > > 110 2/4/2008 7 4 0 am 3 10 51 77.64705882 . 1 > > 110 2/4/2008 7 4 0 am 4 17 57 69.47368421 . 1 > > 110 2/4/2008 7 4 30 am 1 14 65 60.92307692 1 1 > > 110 2/4/2008 7 4 30 am 2 11 46 86.08695652 1 1 > > 110 2/4/2008 7 4 30 am 3 21 49 80.81632653 . 1 > > 110 2/4/2008 7 4 30 am 4 7 66 60 . 1 > > 110 2/4/2008 7 5 0 am 1 13 54 73.33333333 1 1 > > 110 2/4/2008 7 5 0 am 2 15 49 80.81632653 1 1 > > 110 2/4/2008 7 5 0 am 3 17 39 101.5384615 . 1 > > 110 2/4/2008 7 5 0 am 4 12 54 73.33333333 . 1 > > 110 2/4/2008 7 5 30 am 1 14 56 70.71428571 1 1 > > 110 2/4/2008 7 5 30 am 2 16 44 90 1 1 > > 110 2/4/2008 7 5 30 am 3 11 55 72 . 1 > > 110 2/4/2008 7 5 30 am 4 12 43 92.09302326 . 1 > > 110 2/4/2008 7 6 0 am 1 13 60 66 1 2 > > 110 2/4/2008 7 6 0 am 2 14 43 92.09302326 1 2 > > 110 2/4/2008 7 6 0 am 3 21 56 70.71428571 . 2 > > 110 2/4/2008 7 6 0 am 4 14 66 60 . 2 > > 110 2/4/2008 7 6 30 am 1 16 39 101.5384615 1 2 > > 110 2/4/2008 7 6 30 am 2 12 46 86.08695652 1 2 > > 110 2/4/2008 7 6 30 am 3 9 56 70.71428571 . 2 > > 110 2/4/2008 7 6 30 am 4 12 44 90 . 2 > > 110 2/4/2008 7 7 0 am 1 10 35 113.1428571 1 2 > > 110 2/4/2008 7 7 0 am 2 7 49 80.81632653 1 2 > > 110 2/4/2008 7 7 0 am 3 22 66 60 . 2 > > 110 2/4/2008 7 7 0 am 4 13 60 66 . 2 > > 110 2/4/2008 7 7 30 am 1 14 53 74.71698113 1 2 > > 110 2/4/2008 7 7 30 am 2 11 34 116.4705882 1 2 > > 110 2/4/2008 7 7 30 am 3 22 48 82.5 . 2 > > 110 2/4/2008 7 7 30 am 4 13 60 66 . 2 > > 110 2/4/2008 7 8 0 am 1 6 56 70.71428571 1 2 > > 110 2/4/2008 7 8 0 am 2 9 44 90 1 2 > > 110 2/4/2008 7 8 0 am 3 10 55 72 . 2 > > 110 2/4/2008 7 8 0 am 4 23 43 92.09302326 . 2 > > 110 2/4/2008 7 8 30 am 1 15 60 66 1 2 > > 110 2/4/2008 7 8 30 am 2 24 43 92.09302326 1 2 > > 110 2/4/2008 7 8 30 am 3 22 56 70.71428571 . 2 > > 110 2/4/2008 7 8 30 am 4 11 66 60 . 2 > > 110 2/4/2008 7 9 0 am 1 14 45 88 1 2 > > 110 2/4/2008 7 9 0 am 2 12 55 72 1 2 > > 110 2/4/2008 7 9 0 am 3 13 46 86.08695652 . 2 > > 110 2/4/2008 7 9 0 am 4 18 51 77.64705882 . 2 > > 234 2/4/2008 7 0 30 am 1 21 35 72 1 1 > > 234 2/4/2008 7 0 30 am 2 14 49 51.42857143 1 1 > > 234 2/4/2008 7 0 30 am 3 16 66 38.18181818 . 1 > > 234 2/4/2008 7 0 30 am 4 12 60 42 . 1 > > 234 2/4/2008 7 1 0 am 1 9 53 47.54716981 1 1 > > 234 2/4/2008 7 1 0 am 2 12 34 74.11764706 1 1 > > 234 2/4/2008 7 1 0 am 3 10 48 52.5 . 1 > > 234 2/4/2008 7 1 0 am 4 7 60 42 . 1 > > 234 2/4/2008 7 1 30 am 1 22 56 45 1 1 > > 234 2/4/2008 7 1 30 am 2 13 44 57.27272727 1 1 > > 234 2/4/2008 7 1 30 am 3 14 55 45.81818182 . 1 > > 234 2/4/2008 7 1 30 am 4 11 43 58.60465116 . 1 > > 234 2/4/2008 7 2 0 am 1 14 60 42 1 1 > > 234 2/4/2008 7 2 0 am 2 13 43 58.60465116 1 1 > > 234 2/4/2008 7 2 0 am 3 17 56 45 . 1 > > 234 2/4/2008 7 2 0 am 4 7 66 38.18181818 . 1 > > 234 2/4/2008 7 2 30 am 1 9 45 56 1 1 > > 234 2/4/2008 7 2 30 am 2 10 55 45.81818182 1 1 > > 234 2/4/2008 7 2 30 am 3 14 46 54.7826087 . 1 > > 234 2/4/2008 7 2 30 am 4 13 51 49.41176471 . 1 > > 234 2/4/2008 7 3 0 am 1 11 51 49.41176471 1 1 > > 234 2/4/2008 7 3 0 am 2 13 50 50.4 1 1 > > 234 2/4/2008 7 3 0 am 3 6 60 42 . 1 > > 234 2/4/2008 7 3 0 am 4 9 39 64.61538462 . 1 > > 234 2/4/2008 7 3 30 am 1 10 65 38.76923077 1 1 > > 234 2/4/2008 7 3 30 am 2 23 57 44.21052632 1 1 > > 234 2/4/2008 7 3 30 am 3 15 64 39.375 . 1 > > 234 2/4/2008 7 3 30 am 4 24 43 58.60465116 . 1 > > 234 2/4/2008 7 4 0 am 1 22 39 64.61538462 1 1 > > 234 2/4/2008 7 4 0 am 2 11 43 58.60465116 1 1 > > 234 2/4/2008 7 4 0 am 3 14 60 42 . 1 > > 234 2/4/2008 7 4 0 am 4 12 43 58.60465116 . 1 > > 234 2/4/2008 7 4 30 am 1 13 56 45 1 1 > > 234 2/4/2008 7 4 30 am 2 18 66 38.18181818 1 1 > > 234 2/4/2008 7 4 30 am 3 17 55 45.81818182 . 1 > > 234 2/4/2008 7 4 30 am 4 15 43 58.60465116 . 1 > > 234 2/4/2008 7 5 0 am 1 17 60 42 1 1 > > 234 2/4/2008 7 5 0 am 2 13 43 58.60465116 1 1 > > 234 2/4/2008 7 5 0 am 3 14 56 45 . 1 > > 234 2/4/2008 7 5 0 am 4 21 66 38.18181818 . 1 > > 234 2/4/2008 7 5 30 am 1 16 54 46.66666667 1 1 > > 234 2/4/2008 7 5 30 am 2 12 39 64.61538462 1 1 > > 234 2/4/2008 7 5 30 am 3 11 46 54.7826087 . 1 > > 234 2/4/2008 7 5 30 am 4 23 51 49.41176471 . 1 > > 234 2/4/2008 7 6 0 am 1 3 51 49.41176471 1 2 > > 234 2/4/2008 7 6 0 am 2 15 50 50.4 1 2 > > 234 2/4/2008 7 6 0 am 3 7 60 42 . 2 > > 234 2/4/2008 7 6 0 am 4 22 39 64.61538462 . 2 > > 234 2/4/2008 7 6 30 am 1 11 65 38.76923077 1 2 > > 234 2/4/2008 7 6 30 am 2 2 57 44.21052632 1 2 > > 234 2/4/2008 7 6 30 am 3 13 64 39.375 . 2 > > 234 2/4/2008 7 6 30 am 4 9 43 58.60465116 . 2 > > 234 2/4/2008 7 7 0 am 1 10 39 64.61538462 1 2 > > 234 2/4/2008 7 7 0 am 2 15 43 58.60465116 1 2 > > 234 2/4/2008 7 7 0 am 3 16 49 51.42857143 . 2 > > 234 2/4/2008 7 7 0 am 4 12 66 38.18181818 . 2 > > 234 2/4/2008 7 7 30 am 1 11 54 46.66666667 1 2 > > 234 2/4/2008 7 7 30 am 2 15 49 51.42857143 1 2 > > 234 2/4/2008 7 7 30 am 3 33 39 64.61538462 . 2 > > 234 2/4/2008 7 7 30 am 4 2 54 46.66666667 . 2 > > 234 2/4/2008 7 8 0 am 1 9 56 45 1 2 > > 234 2/4/2008 7 8 0 am 2 10 44 57.27272727 1 2 > > 234 2/4/2008 7 8 0 am 3 17 55 45.81818182 . 2 > > 234 2/4/2008 7 8 0 am 4 15 56 45 . 2 > > 234 2/4/2008 7 8 30 am 1 11 46 54.7826087 1 2 > > 234 2/4/2008 7 8 30 am 2 10 49 51.42857143 1 2 > > 234 2/4/2008 7 8 30 am 3 18 53 47.54716981 . 2 > > 234 2/4/2008 7 8 30 am 4 9 39 64.61538462 . 2 > > 234 2/4/2008 7 9 0 am 1 14 68 37.05882353 1 2 > > 234 2/4/2008 7 9 0 am 2 8 61 41.31147541 1 2 > > 234 2/4/2008 7 9 0 am 3 16 57 44.21052632 . 2 > > 234 2/4/2008 7 9 0 am 4 9 47 53.61702128 . 2 > > i actually want the covariance matrix for the traveltimes of the 2 > sensor id's. weight is the volume. thanks. pls help me out.thanks.
|
Pages: 1 Prev: Become the Best Project Manager Next: basic question |