From: Vincenzo Librandi on
a,b,c, integers, with gcd(a,b,c)=1

to solve

a^4+b^3=c^2

Regards,
Vincenzo Librandi
From: hagman on
On 30 Jul., 20:28, Vincenzo Librandi <vincenzo.librandw...(a)alice.it>
wrote:
> a,b,c, integers, with gcd(a,b,c)=1
>
> to solve
>
> a^4+b^3=c^2
>
> Regards,
> Vincenzo Librandi


E.g. a=1, b=2, c=3.

Hint: Investigate b*(b-1) = 2*a*a first.

From: Vincenzo Librandi on
On 30 Jul., 20:28, Vincenzo Librandi <vincenzo.librandw...(a)alice.it>
wrote:
> a,b,c, integers, with gcd(a,b,c)=1
>
> to solve
>
> a^4+b^3=c^2
>
> Regards,
> Vincenzo Librandi

>>hagman wrote:

>>E.g. a=1, b=2, c=3.
>>
>>Hint: Investigate b*(b-1) = 2*a*a first.

The solutions are finite or infinite ?

Regards,
Vincenzo Librandi
From: Vincenzo Librandi on
On 30 Jul., 20:28, Vincenzo Librandi <vincenzo.librandw...(a)alice.it>
wrote:
> a,b,c, integers, with gcd(a,b,c)=1
>
> to solve
>
> a^4+b^3=c^2
>
> Regards,
> Vincenzo Librandi

>>hagman wrote:

>>E.g. a=1, b=2, c=3.
>>
>>Hint: Investigate b*(b-1) = 2*a*a first.

>>>Vincenzo Librandi wrote:
>>>
>>>The solutions are finite or infinite ?

The solutions are infinite.

Regards,
Vincenzo Librandi
From: Vincenzo Librandi on
>Vincenzo Librandi wrote:
>
>a,b,c, integers, with gcd(a,b,c)=1
>
>to solve
>
>a^4+b^3=c^2

b^3=c^2-a^4

b^3=(c+a^2)(c-a^2)

integers m,n, such that

m^3=c+a^2; n^3=c-a^2

c=(m^3+n^3)/2

a^2=(m^3-n^3)/2

let m=k+1 and n=k-1

a^2=3k^2+1

Pell equation

a^2-3k^2=1

by k=0,1,4,15,56,209,780,...

26^4+224^3=3420^2

with k=4: m=5; n=3

which the solution

7^4+15^3=76^2

with k=56, m=57, n=55

97^4+3135^3=175784^2

and so on

Regards,
Vincenzo Librandi