From: greg doris on 24 Oct 2009 13:28 I am new to matlab,but my teacher asked me to do a project with matlab. the deadling is next wednesday. I tried a week ,just did first the question in part 1.So I ask for help,please give me some ideas: how to do part1 in the project? some functions for the project: --------------------------------------------- % Shuffles the data you provide. % % [SHUFFLEDDATA, SHUFFLEDDATALABELS] = SHUFFLEROWS( DATA, DATALABELS ) % % Arguments: 'data' should be a training data matrix of N examples (N rows), % and M dimensions for each (M columns). % 'datalabels' should be a Nx1 column vector of labels. % % Returns: Shuffled data. % % HINT: set the random number seed with: % % rand('state', seed) % % to allow reproduciblity of experimental results. % function [shuffleddata, shuffleddatalabels] = shufflerows( data, datalabels ) permutation = randperm( size(data,1) ); shuffleddata = data(permutation, :); shuffleddatalabels = datalabels(permutation, :); --------------------------------------------------------- % % SHOWDIGIT( digdata ) % % Arguments: 'digdata' should be a matrix with 256 elements, % either as 16x16, or 1x256. % % Returns: Nothing. % % Displays the image of the supplied digit. % function showdigit( digdata ) figure imagesc( reshape(digdata,16,16) ); set( gcf, 'Position', [500 500 256 256]); colormap gray; axis off; axis square; ----------------------------------------------- % Visualizes the supplied 2-d training matrix. % % SHOWDATA( traindata, truelabels, [predictions] ) % % Arguments: 'traindata' should be a 2d matrix of N examples (N rows) % and M dimensions (M columns). % % Returns: Nothing. % % MUST be the original pixels (i.e. 256 columns in the data matrix) % % Supply an optional argument 'predictions' to visualise your mistakes % against the true labels. % function showdata( data, labels, guess ) %first sort the digits so they're in order [labels, sortorder] = sort(labels); data = data(sortorder,:); %check to see whether this includes predictions testing = true; if exist('guess','var') guess = guess(sortorder); else guess = labels; testing = false; end %find out how many there are and restrict accordingly numexamples = size(data,1); if numexamples > 300 error('Too big!'); end %only display proper digits if size(data,2) ~= 256 error('Sorry - can only display digits as the original pixels.'); end %decide how many digits to put in the square for side=1:17 if side^2 >= (numexamples) break; end end %set up the border parameters border = 3; framewidth = 16+(2*border); %and the main matrix to display m = zeros(side*framewidth,side*framewidth); n=1; mistakes = 0; for row = 1:framewidth:(side*framewidth)-1 for col = 1:framewidth:(side*framewidth)-1 %retrieve the digit pixels digit = reshape(data(n,:), 16,16); %put a black border around it frame = zeros(framewidth); frame(border:(border+15), border:(border+15)) = digit; digit = frame; %draw a further white border around the digit, if we've made an error if labels(n)~=guess(n) digit( border, border:(framewidth-border) ) = 255; %top of white 'mistake' box digit( framewidth-border, border:(framewidth-border) ) = 255; %bottom digit( border:(framewidth-border), border ) = 255; %left digit( border:(framewidth-border), framewidth-border ) = 255; %right mistakes = mistakes + 1; end %put it in the main matrix m(row:(row+(framewidth-1)), col:(col+(framewidth-1))) = digit; %increment which example we're dealing with n=n+1; %break if we reached the end if n > size(data,1) break; end; end %break if we reached the end if n > size(data,1) break; end; end %display it imagesc( m ); colormap gray; axis off; axis square; %put a title on it if testing==true rate = mistakes / numexamples; rate = ceil(rate*10000)/100; title([ num2str(mistakes) ' errors from ' num2str(numexamples) ' (' num2str(rate) '%)'], 'FontSize', 16); end ------------------------------------------------------- % K-nearest Neighbour classifier % % Y = KNEAREST( k, x, data, truelabels ) % % Arguments: % 'data' should be a N rows by M columns matrix of data, composed % of N training examples, each with M dimensions. % % 'truelabels' should be a Nx1 column vector, with class labels. % % 'x' is the data vector, size 1xM, where the knn estimate is required. % % 'k' is the number of neighbours to take into account. % Note that even values will result in ties broken randomly. % % Returns: % 'y' - a predicted class label for your data vector 'x' % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % % YOU SHOULD NOT BE EDITING THIS CODE % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function y = knearest( k, x, data, datalabels ) %get data characteristics numtrain = size(data,1); numfeatures = size(data,2); if size(x,2) ~= numfeatures error('Test data dimensions does not match train data dimensions.'); end if k > numtrain error( ['Not enough training samples to use k = ' num2str(k) ' (you only supplied ' num2str(numtrain) ')'] ); end %copy the test example 'numtrain' times protos = repmat(x, numtrain, 1); %measure the Euclidean distance from this test example to every training example distances = [ sqrt(sum((data - protos).^2,2)) datalabels ]; %sort them according to distances (find nearest neighbours) distances = sortrows(distances); %calculate the most common class in the nearest 'k' neighbours y = mode( distances(1:k,2)' ); ------------------------------------------------- % % GETONEDIGIT( n, instance, data ) % % Arguments: 'n' and 'instance' are integer, 'data' should % be the 3-d matrix loaded up from the USPS .mat files. % % Returns: 2d matrix of instance 'instance' for digit 'n', % pulling it out of the supplied data matrix. % function digdata = getonedigit( n, instance, data ) if ~exist('data', 'var') error('Three arguments required. Format is: getdigitdata( n, instance, data )'); end if n > size(data,3) error('INCORRECT ARGUMENTS: First argument is the digit (1-9) you want (use 10 get get digit zero), second argument is which instance you want.'); end if instance > size(data,2) error( [ 'INCORRECT ARGUMENT: The instance argument must be in the range 1-' num2str(size(data,2)) '.' ] ); end %reshape it into a square matrix digdata = reshape( data( : ,instance, n ) , 16 , 16); %cast to doubles digdata = double(digdata); -------------------------------------------- % % EXTRACTFEATURES( digdata ) % % Arguments: 'digdata' is a 2-d matrix, size 16x16. % % Process the supplied 2d matrix to generate a lower dimensional % feature vector, to be used in a learning algorithm. % % The returned vector is the sum of pixel values in each of the 16 columns. % Alternatives might be the sum of values in the 16 rows, or combinations % of the two, or other statistics of the pixels, like standard deviation. % % Note: This MUST return a 1-d array % % function x = extractfeatures( digdata ) %sum the values in along matrix dimension 1 (rows) x = sum(digdata,1); --------------------------------------- % CROSSFOLD allows you to partition your data into several train/test splits, also known as 'folds'. % % [traindata, trainlabels, testdata, testlabels] = CROSSFOLD( fold, numfolds, data, datalabels ) % % Arguments: % fold - integer, which fold you want, out of 'numfolds'. % numfolds - integer, total number of folds you want to make. % data - 2d matrix N examples (N rows) by M dimensions (M columns). % datalabels - the data labels, as a Nx1 column vector. % % Example: % I want to do a 5-fold cross validation, assuming I have variables 'data' and % 'datalabels' already created, I type: % % [trdata trlabels tedata telabels] = crossfold( 1, 5, data, datalabels ); % % to get the first train/test split. % % [trdata trlabels tedata telabels] = crossfold( 4, 5, data, datalabels ); % % to get the fourth split. % % NB: This function generates training data as the SMALLER fold. % % function [traindata, trainlabels, testdata, testlabels] = crossfold( fold, numfolds, data, datalabels ) %take note of how many features (columns) we have numfeatures = size(data,2); %join the data and the labels up to make this easier data = [data datalabels]; %calculate how big each fold (data partition) will be foldsize = round( size(data,1) / numfolds ); %calculate the matrix indices for the start/end of the partitions startindex = (fold-1)*foldsize+1; endindex = (fold-1)*foldsize+foldsize; %boundary condition if fold==numfolds endindex = size(data,1); end %find the training data rows trainindices = startindex:endindex; %everything else is testing data testindices = [ (1:startindex-1) (endindex+1):size(data,1) ]; %split it traindata = data(trainindices,:); testdata = data(testindices,:); %split off the data from the data labels trainlabels = traindata(:,numfeatures+1); traindata(:,numfeatures+1) = []; testlabels = testdata(:,numfeatures+1); testdata(:,numfeatures+1) = []; ------------------------------------------------ ..
|
Pages: 1 Prev: need a code for model order reduction Next: ask for help |