From: eric g on 19 Jun 2010 07:49 Hello Group, I want to add a color grayscale (myColorFunction[x_]:=RGBColor[1-x,1-x,1-x]) legend this arrayplot, from min (white) to max (dark) values. ArrayPlot[Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame -> None] best regards, eric
From: Bill Rowe on 20 Jun 2010 03:45 On 6/19/10 at 7:49 AM, eric.phys(a)gmail.com (eric g) wrote: >Hello Group, I want to add a color grayscale >(myColorFunction[x_]:=RGBColor[1-x,1-x,1-x]) legend this arrayplot, >from min (white) to max (dark) values. >ArrayPlot[Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame >-> None] Perhaps something like Grid[{{ArrayPlot[Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame -> None]}, {Graphics[Raster[{Reverse(a)Range[50]/50}], AspectRatio -> .1]}, {.1, 1}}, Alignment -> {{Left, Right}}]
From: Bob Hanlon on 20 Jun 2010 03:47 Needs["PlotLegends`"] ShowLegend[ ArrayPlot[ Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame -> None, ColorFunction -> Function[{a}, RGBColor[1 - a, 1 - a, 1 - a]]], {Function[{a}, RGBColor[a, a, a]], 11, " 5", " 0", LegendPosition -> {1.1, -0.4}}] Bob Hanlon ---- eric g <eric.phys(a)gmail.com> wrote: ============= Hello Group, I want to add a color grayscale (myColorFunction[x_]:=RGBColor[1-x,1-x,1-x]) legend this arrayplot, from min (white) to max (dark) values. ArrayPlot[Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame -> None] best regards, eric
From: Kevin J. McCann on 21 Jun 2010 02:11 Bob, The problem I have with this approach is that you have to give, in text, the min and max labels for the plot. This is clearly a place where errors can occur. It would be really great if all you had to do was to specify the min and max of the z-axis (color scale) and the legend automatically incorporated this. Kevin Bob Hanlon wrote: > Needs["PlotLegends`"] > > ShowLegend[ > ArrayPlot[ > Table[5./(1 + x^2 + y^2), > {x, -5, 5}, {y, -5, 5}], > Frame -> None, > ColorFunction -> > Function[{a}, > RGBColor[1 - a, 1 - a, 1 - a]]], > {Function[{a}, > RGBColor[a, a, a]], > 11, " 5", " 0", > LegendPosition -> {1.1, -0.4}}] > > > Bob Hanlon > > ---- eric g <eric.phys(a)gmail.com> wrote: > > ============= > Hello Group, > I want to add a color grayscale > (myColorFunction[x_]:=RGBColor[1-x,1-x,1-x]) legend this arrayplot, from > min (white) to max (dark) values. > > ArrayPlot[Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame -> None] > > best regards, > eric > >
From: Bob Hanlon on 21 Jun 2010 02:11 It you want it to do more, just tell it so. Needs["PlotLegends`"] arrayPlot[expr_, iterX_, iterY_] := Module[ {x = iterX[[1]], y = iterY[[1]], min, max, cons}, cons = LessEqual @@ (#[[{2, 1, 3}]]) & /@ {iterX, iterY}; min = ToString[Round[ NMinimize[{expr, cons}, {x, y}][[1]] // Chop, 0.1]]; max = ToString[Round[ NMaximize[{expr, cons}, {x, y}][[1]] // Chop, 0.1]]; ShowLegend[ ArrayPlot[ Table[5./(1 + x^2 + y^2), iterX, iterY], Frame -> None, ColorFunction -> Function[{a}, RGBColor[1 - a, 1 - a, 1 - a]]], {Function[{a}, RGBColor[a, a, a]], 11, max, min, LegendPosition -> {1.1, -0.4}}]] m = RandomInteger[{5, 25}] 10 arrayPlot[m/(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}] Bob Hanlon ---- "Kevin J. McCann" <kjm(a)KevinMcCann.com> wrote: ============= Bob, The problem I have with this approach is that you have to give, in text, the min and max labels for the plot. This is clearly a place where errors can occur. It would be really great if all you had to do was to specify the min and max of the z-axis (color scale) and the legend automatically incorporated this. Kevin Bob Hanlon wrote: > Needs["PlotLegends`"] > > ShowLegend[ > ArrayPlot[ > Table[5./(1 + x^2 + y^2), > {x, -5, 5}, {y, -5, 5}], > Frame -> None, > ColorFunction -> > Function[{a}, > RGBColor[1 - a, 1 - a, 1 - a]]], > {Function[{a}, > RGBColor[a, a, a]], > 11, " 5", " 0", > LegendPosition -> {1.1, -0.4}}] > > > Bob Hanlon > > ---- eric g <eric.phys(a)gmail.com> wrote: > > ============= > Hello Group, > I want to add a color grayscale > (myColorFunction[x_]:=RGBColor[1-x,1-x,1-x]) legend this arrayplot, from > min (white) to max (dark) values. > > ArrayPlot[Table[5./(1 + x^2 + y^2), {x, -5, 5}, {y, -5, 5}], Frame -> None] > > best regards, > eric >
|
Pages: 1 Prev: Using Mathematica for Electrophysiology Data Next: Bar chart style with ListPlot |