From: dh on
Hi Guiseppe,
AbsoluteOptions is the word you are looking for. E.g.:
g = Plot[Sin[x], {x, 0, Pi}]
AbsoluteOptions[g, PlotRange]
Daniel

On 24.02.2010 12:21, pippo p. wrote:
> when you plot an unlimited function, mathematica chooses the vertical
> range's limits. could i detect which are the limits chosen by
> mathematica to use them? thanks
> giuseppe
>


--

Daniel Huber
Metrohm Ltd.
Oberdorfstr. 68
CH-9100 Herisau
Tel. +41 71 353 8585, Fax +41 71 353 8907
E-Mail:<mailto:dh(a)metrohm.com>
Internet:<http://www.metrohm.com>


From: José Luis Gómez Muñoz on
ONE: See the example in the help of the standard Mathematica command
AbsoluteOptions:

http://reference.wolfram.com/mathematica/ref/AbsoluteOptions.html

TWO: Notice that you can use the output of AbsoluteOptions with the standard
Mathematica command ReplaceAll:

http://reference.wolfram.com/mathematica/ref/ReplaceAll.html

Hope that helps

Jose

Mexico



-----Mensaje original-----
De: pippo p. [mailto:spazio1(a)gmail.com]
Enviado el: Mi=E9rcoles, 24 de Febrero de 2010 05:21 a.m.
Para: mathgroup(a)smc.vnet.net
Asunto: detection of automatic range of plot?

when you plot an unlimited function, mathematica chooses the vertical
range's limits. could i detect which are the limits chosen by
mathematica to use them? thanks
giuseppe




From: DrMajorBob on
Or:

pl = Plot[BesselI[1, x], {x, 0, 5}];
PlotRange /. AbsoluteOptions(a)pl

{{0., 5.}, {0., 24.3356}}

Last@%

{0., 24.3356}

Bobby

On Thu, 25 Feb 2010 00:52:12 -0600, Peter Pein <petsie(a)dordos.net> wrote:

> Am 24.02.2010 12:21, schrieb pippo p.:
>> when you plot an unlimited function, mathematica chooses the vertical
>> range's limits. could i detect which are the limits chosen by
>> mathematica to use them? thanks
>> giuseppe
>>
>
> AbsoluteOptions is your friend:
>
> In[1]:= pl=Plot[BesselI[1,x],{x,0,5}];
> In[2]:=
> Cases[AbsoluteOptions[pl],HoldPattern[PlotRange->pr_]:>pr[[2]],1,1][[1]]
> Out[2]= {0.,24.3356}
>
> Peter
>


--
DrMajorBob(a)yahoo.com