From: Zim on
Hi Everyone
I am trying to integrate a region which sort of ellispe. I am using dblquad to do so where inner limits are function of outer limits as follows. But I am getting error that x1 is undefined @dblquad
(const = constant)

F = @(x1,x2)((1 ./ (2 .* pi .* const .* const)) .* (exp((-0.5) .* ((((x1 - const).^ 2) ./ const ) + (((x2 - const) .^ 2) ./ const )))));
dblquad(F,x_L,x_H,y1,y2)


y1 = (-const - (sqrt((const .^ 2 ) - (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* C);

y2 = (-const - (sqrt((const .^ 2 ) + (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* const);

thanks in advance,
JA
From: John D'Errico on
"Zim " <abraham_john_love(a)yahoo.com> wrote in message <hvlfb4$i7b$1(a)fred.mathworks.com>...
> Hi Everyone
> I am trying to integrate a region which sort of ellispe. I am using dblquad to do so where inner limits are function of outer limits as follows. But I am getting error that x1 is undefined @dblquad
> (const = constant)
>
> F = @(x1,x2)((1 ./ (2 .* pi .* const .* const)) .* (exp((-0.5) .* ((((x1 - const).^ 2) ./ const ) + (((x2 - const) .^ 2) ./ const )))));
> dblquad(F,x_L,x_H,y1,y2)
>
>
> y1 = (-const - (sqrt((const .^ 2 ) - (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* C);
>
> y2 = (-const - (sqrt((const .^ 2 ) + (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* const);
>
> thanks in advance,
> JA

The problem is that dblquad does not allow problems
where the limits vary as a function of the other variable.

Sometimes you can transform a problem with variable
limits into one with fixed, constant limits. If not, then
you cannot use dblquad for this problem.

John
From: Ravi on
Hi JA,

Yes John is correct - dblquad (and most integration functions) can only integrate over a rectangular region (fixed limits).

You will have to transform your curvilinear problem to a rectangular problem.

integral[f(x,y)*dx*dy] = integral[|J|* f(x(u,v),y(u,v)*du*dv]

|J|=absolute value of Jacobian determinant J

J=del(x)/del(u)*del(y)/del(v) - del(x)/del(v)*del(y)/del(u)

LH integral is your original integral with variable limits.

RH integral is the transformed integral with fixed limits which u can use with dblquad.


If your region is an ellipse, use the following transformation

x=a*v*cos(u)

y=b*v*sin(u)

a,b=semi major/minor axis of ellipse

This will give Jacobian J=a*b*v

And the integration limits as
0<=u<=2*pi
0<=v<=1

Now you can use dblquad !

Ravi


"Zim " <abraham_john_love(a)yahoo.com> wrote in message <hvlfb4$i7b$1(a)fred.mathworks.com>...
> Hi Everyone
> I am trying to integrate a region which sort of ellispe. I am using dblquad to do so where inner limits are function of outer limits as follows. But I am getting error that x1 is undefined @dblquad
> (const = constant)
>
> F = @(x1,x2)((1 ./ (2 .* pi .* const .* const)) .* (exp((-0.5) .* ((((x1 - const).^ 2) ./ const ) + (((x2 - const) .^ 2) ./ const )))));
> dblquad(F,x_L,x_H,y1,y2)
>
>
> y1 = (-const - (sqrt((const .^ 2 ) - (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* C);
>
> y2 = (-const - (sqrt((const .^ 2 ) + (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* const);
>
> thanks in advance,
> JA
From: Zim on
Thanks a lot ravi..

"Ravi " <soni_romi(a)yahoo.com.thisisjunkremoveit> wrote in message <hvmg1d$30q$1(a)fred.mathworks.com>...
> Hi JA,
>
> Yes John is correct - dblquad (and most integration functions) can only integrate over a rectangular region (fixed limits).
>
> You will have to transform your curvilinear problem to a rectangular problem.
>
> integral[f(x,y)*dx*dy] = integral[|J|* f(x(u,v),y(u,v)*du*dv]
>
> |J|=absolute value of Jacobian determinant J
>
> J=del(x)/del(u)*del(y)/del(v) - del(x)/del(v)*del(y)/del(u)
>
> LH integral is your original integral with variable limits.
>
> RH integral is the transformed integral with fixed limits which u can use with dblquad.
>
>
> If your region is an ellipse, use the following transformation
>
> x=a*v*cos(u)
>
> y=b*v*sin(u)
>
> a,b=semi major/minor axis of ellipse
>
> This will give Jacobian J=a*b*v
>
> And the integration limits as
> 0<=u<=2*pi
> 0<=v<=1
>
> Now you can use dblquad !
>
> Ravi
>
>
> "Zim " <abraham_john_love(a)yahoo.com> wrote in message <hvlfb4$i7b$1(a)fred.mathworks.com>...
> > Hi Everyone
> > I am trying to integrate a region which sort of ellispe. I am using dblquad to do so where inner limits are function of outer limits as follows. But I am getting error that x1 is undefined @dblquad
> > (const = constant)
> >
> > F = @(x1,x2)((1 ./ (2 .* pi .* const .* const)) .* (exp((-0.5) .* ((((x1 - const).^ 2) ./ const ) + (((x2 - const) .^ 2) ./ const )))));
> > dblquad(F,x_L,x_H,y1,y2)
> >
> >
> > y1 = (-const - (sqrt((const .^ 2 ) - (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* C);
> >
> > y2 = (-const - (sqrt((const .^ 2 ) + (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* const);
> >
> > thanks in advance,
> > JA
From: Zim on
thanks a lot john..:)
"Zim " <abraham_john_love(a)yahoo.com> wrote in message <hvn8sg$9ne$1(a)fred.mathworks.com>...
> Thanks a lot ravi..
>
> "Ravi " <soni_romi(a)yahoo.com.thisisjunkremoveit> wrote in message <hvmg1d$30q$1(a)fred.mathworks.com>...
> > Hi JA,
> >
> > Yes John is correct - dblquad (and most integration functions) can only integrate over a rectangular region (fixed limits).
> >
> > You will have to transform your curvilinear problem to a rectangular problem.
> >
> > integral[f(x,y)*dx*dy] = integral[|J|* f(x(u,v),y(u,v)*du*dv]
> >
> > |J|=absolute value of Jacobian determinant J
> >
> > J=del(x)/del(u)*del(y)/del(v) - del(x)/del(v)*del(y)/del(u)
> >
> > LH integral is your original integral with variable limits.
> >
> > RH integral is the transformed integral with fixed limits which u can use with dblquad.
> >
> >
> > If your region is an ellipse, use the following transformation
> >
> > x=a*v*cos(u)
> >
> > y=b*v*sin(u)
> >
> > a,b=semi major/minor axis of ellipse
> >
> > This will give Jacobian J=a*b*v
> >
> > And the integration limits as
> > 0<=u<=2*pi
> > 0<=v<=1
> >
> > Now you can use dblquad !
> >
> > Ravi
> >
> >
> > "Zim " <abraham_john_love(a)yahoo.com> wrote in message <hvlfb4$i7b$1(a)fred.mathworks.com>...
> > > Hi Everyone
> > > I am trying to integrate a region which sort of ellispe. I am using dblquad to do so where inner limits are function of outer limits as follows. But I am getting error that x1 is undefined @dblquad
> > > (const = constant)
> > >
> > > F = @(x1,x2)((1 ./ (2 .* pi .* const .* const)) .* (exp((-0.5) .* ((((x1 - const).^ 2) ./ const ) + (((x2 - const) .^ 2) ./ const )))));
> > > dblquad(F,x_L,x_H,y1,y2)
> > >
> > >
> > > y1 = (-const - (sqrt((const .^ 2 ) - (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* C);
> > >
> > > y2 = (-const - (sqrt((const .^ 2 ) + (4 .* const .* ((cont .* (x1 .^ 2)) + (const .* x1) + const))))) ./ (2 .* const);
> > >
> > > thanks in advance,
> > > JA