From: David Bevan on
In[]:== innerApply[f_,a_]:==Apply@@#&/@Transpose[{f,a}]
innerApply[{f,g},{{a,b},{c,d}}]
Out[]== {f[a,b],g[c,d]}

David %^>


> -----Original Message-----
> From: Fred Klingener [mailto:gigabitbucket(a)BrockEng.com]
> Sent: 13 May 2010 12:26
> To: mathgroup(a)smc.vnet.net
> Subject: innerApply[{f, g}, {{a, b}, {c, d}}] == {f[a, b], g[c,
> d]} ?
>
> This seems to work fine, but there must be a less clumsy way to do it:
>
> Clear[innerApply, functionList, argumentList, f, g, a, b, c, d]
>
> innerApply[functionList_, argumentList_] :==
> Table[functionList[[j]] @@ argumentList[[j]], {j, 1,
> Length[functionList]}]
>
> In[770]:== innerApply[{f, g}, {{a, b}, {c, d}}]
> Out[770]== {f[a, b], g[c, d]}
>
> TIA,
> Fred Klingener
>

From: Bob Hanlon on

MapThread[#1 @@ #2 &, {{f, g}, {{a, b}, {c, d}}}]

{f(a,b),g(c,d)}


Bob Hanlon

---- Fred Klingener <gigabitbucket(a)BrockEng.com> wrote:

=============
This seems to work fine, but there must be a less clumsy way to do it:

Clear[innerApply, functionList, argumentList, f, g, a, b, c, d]

innerApply[functionList_, argumentList_] :=
Table[functionList[[j]] @@ argumentList[[j]], {j, 1,
Length[functionList]}]

In[770]:= innerApply[{f, g}, {{a, b}, {c, d}}]
Out[770]= {f[a, b], g[c, d]}

TIA,
Fred Klingener


 | 
Pages: 1
Prev: Plotting piecewise in 2D
Next: Genetic Algorithm