From: Gerry Myerson on
In article
<588745340.144280.1274020233739.JavaMail.root(a)gallium.mathforum.org>,
"M.A.Fajjal" <h2maf(a)yahoo.com> wrote:

> > M.A.Fajjal :
> >
> > > > p is a prime iff there is an integer k such that
> > > >
> > > > log(k*p +/- 1)/(p-1) = log(q)/2
> > > >
> > > > where q is any prime
> > > >
> > > > Is there any counter example
> > >
> > > q=/=p
> >
> > reduce to log( (k*p +/- 1)^(p-1) ) = log(q^2)
> ??
> It should be
> log( (k*p +/- 1)^(1/(p-1)) ) = log(q^(1/2))
>
>
> > reduce to (k*p +/- 1) ^ ((p-1)/2) = q
> >
> It should be
>
> (k*p +/- 1) ^ (2/(p-1)) = q
>
> Note that q is given as any prime =/= p
>
> Say q = 2
>
> Then for any prime p there exist integer k such that
>
> 2^((p-1)/2) +/- 1 = k*p
>
> in other words for any prime p
>
> modp(2^((p-1)/2) +/- 1,p) = 0
>
> modp(3^((p-1)/2) +/- 1,p) = 0
>
> modp(5^((p-1)/2) +/- 1,p) = 0
>
> .....
>
> modp(719^((p-1)/2) +/- 1,p) = 0
>
> ......

Have you looked at pseudoprimes? Strong pseudoprimes?
Carmichael numbers?

--
Gerry Myerson (gerry(a)maths.mq.edi.ai) (i -> u for email)
From: M.A.Fajjal on
> In article
> <588745340.144280.1274020233739.JavaMail.root(a)gallium.
> mathforum.org>,
> "M.A.Fajjal" <h2maf(a)yahoo.com> wrote:
>
> > > M.A.Fajjal :
> > >
> > > > > p is a prime iff there is an integer k such
> that
> > > > >
> > > > > log(k*p +/- 1)/(p-1) = log(q)/2
> > > > >
> > > > > where q is any prime
> > > > >
> > > > > Is there any counter example
> > > >
> > > > q=/=p
> > >
> > > reduce to log( (k*p +/- 1)^(p-1) ) = log(q^2)
> > ??
> > It should be
> > log( (k*p +/- 1)^(1/(p-1)) ) = log(q^(1/2))
> >
> >
> > > reduce to (k*p +/- 1) ^ ((p-1)/2) = q
> > >
> > It should be
> >
> > (k*p +/- 1) ^ (2/(p-1)) = q
> >
> > Note that q is given as any prime =/= p
> >
> > Say q = 2
> >
> > Then for any prime p there exist integer k such
> that
> >
> > 2^((p-1)/2) +/- 1 = k*p
> >
> > in other words for any prime p
> >
> > modp(2^((p-1)/2) +/- 1,p) = 0
> >
> > modp(3^((p-1)/2) +/- 1,p) = 0
> >
> > modp(5^((p-1)/2) +/- 1,p) = 0
> >
> > .....
> >
> > modp(719^((p-1)/2) +/- 1,p) = 0
> >
> > ......
>
> Have you looked at pseudoprimes? Strong pseudoprimes?
>
> Carmichael numbers?
>
pseudoprimes, Strong pseudoprimes and Carmichael numbers can pass for some q not all q

example
p := 18721:;
n := (p-1)*(1/2):;

is((2^n-1)/p, 'integer'); false
is((3^n-1)/p, 'integer'); true
is((5^n-1)/p, 'integer'); false


p := 41041:;
n := (p-1)*(1/2):;

is((2^n-1)/p, 'integer'); true
is((3^n-1)/p, 'integer'); true
is((7^n-1)/p, 'integer'); false
From: Gerry Myerson on
In article
<252435540.165597.1274060570728.JavaMail.root(a)gallium.mathforum.org>,
"M.A.Fajjal" <h2maf(a)yahoo.com> wrote:

> > In article
> > <588745340.144280.1274020233739.JavaMail.root(a)gallium.
> > mathforum.org>,
> > "M.A.Fajjal" <h2maf(a)yahoo.com> wrote:
> >
> > > > M.A.Fajjal :
> > > >
> > > > > > p is a prime iff there is an integer k such
> > that
> > > > > >
> > > > > > log(k*p +/- 1)/(p-1) = log(q)/2
> > > > > >
> > > > > > where q is any prime
> > > > > >
> > > > > > Is there any counter example
> > > > >
> > > > > q=/=p
> > > >
> > > > reduce to log( (k*p +/- 1)^(p-1) ) = log(q^2)
> > > ??
> > > It should be
> > > log( (k*p +/- 1)^(1/(p-1)) ) = log(q^(1/2))
> > >
> > >
> > > > reduce to (k*p +/- 1) ^ ((p-1)/2) = q
> > > >
> > > It should be
> > >
> > > (k*p +/- 1) ^ (2/(p-1)) = q
> > >
> > > Note that q is given as any prime =/= p
> > >
> > > Say q = 2
> > >
> > > Then for any prime p there exist integer k such
> > that
> > >
> > > 2^((p-1)/2) +/- 1 = k*p
> > >
> > > in other words for any prime p
> > >
> > > modp(2^((p-1)/2) +/- 1,p) = 0
> > >
> > > modp(3^((p-1)/2) +/- 1,p) = 0
> > >
> > > modp(5^((p-1)/2) +/- 1,p) = 0
> > >
> > > .....
> > >
> > > modp(719^((p-1)/2) +/- 1,p) = 0
> > >
> > > ......
> >
> > Have you looked at pseudoprimes? Strong pseudoprimes?
> >
> > Carmichael numbers?
> >
> pseudoprimes, Strong pseudoprimes and Carmichael numbers can pass for some q
> not all q
>
> example
> p := 18721:;
> n := (p-1)*(1/2):;
>
> is((2^n-1)/p, 'integer'); false
> is((3^n-1)/p, 'integer'); true
> is((5^n-1)/p, 'integer'); false
>
>
> p := 41041:;
> n := (p-1)*(1/2):;
>
> is((2^n-1)/p, 'integer'); true
> is((3^n-1)/p, 'integer'); true
> is((7^n-1)/p, 'integer'); false

Well, I suppose it's trivial that a composite number can't pass
for all q; after all, if p = r s, where r is prime, then
(r^n +/- 1) / p can't be an integer. This even shows up in
your last example - 41041 = 7 x 5863.

--
Gerry Myerson (gerry(a)maths.mq.edi.ai) (i -> u for email)