Prev: "sensitivity" command
Next: decimate() vs downsample()
From: Chamil on 4 Mar 2010 06:51 Hi, I used sigmoidnet function to obtain a nlarx model. But, I'm not sure how to obtain the final modl equation. The what i get in matlab command window is shown below. If anybody knows to get the final equation of the nlarx model please let me know. IDNLARX model with 1 output and 6 inputs Input names: u1, u2, u3, u4, u5, u6 Output name: y1 Standard regressors corresponding to the orders: na = [0] nb = [1 1 1 1 1 1] nk = [0 0 0 0 0 0] No custom regressor Nonlinear regressors: u1(t) u2(t) u3(t) u4(t) u5(t) u6(t) Nonlinearity estimator: sigmoidnet with 13 units Loss function: 10.9293 Sampling interval: 1 Estimated model (NLARX) SearchMethod: 'Auto' Criterion: 'det' Weighting: 1 MaxIter: 20 Tolerance: 1.0000e-005 LimitError: 0 Display: 'on' MaxSize: 250000 IterWavenet: 'auto' Advanced: [1x1 struct] Name: '' Ts: 1 TimeUnit: 's' TimeVariable: 't' InputName: {6x1 cell} InputUnit: {6x1 cell} OutputName: {'y1'} OutputUnit: {''} na: 0 nb: [1 1 1 1 1 1] nk: [0 0 0 0 0 0] CustomRegressors: {} NonlinearRegressors: [1 2 3 4 5 6] Nonlinearity: [1x1 sigmoidnet] Focus: 'Prediction' Algorithm: [1x1 struct] EstimationInfo: [1x1 struct] NoiseVariance: 11 Notes: {} UserData: [] ans = Status: 'Estimated model (NLARX)' Method: 'NLARX using SearchMethod = Auto' LossFcn: 10.9293 FPE: 11.1578 DataName: 'data' DataLength: 6600 DataTs: 1 DataDomain: 'time' DataInterSample: {'zoh'} WhyStop: 'Maximum number of iterations reached.' UpdateNorm: 55.9410 LastImprovement: 3.3189 Iterations: 20 InitialState: [] Warning: '' InitRandnState: [] EstimationTime: 9.6253 ans = RegressorMean: [46.5188 0 141 171.5000 186.5000 202] NonLinearSubspace: [6x3 double] LinearSubspace: [6x3 double] LinearCoef: [3x1 double] Dilation: [3x13 double] Translation: [8.5415 -11.8708 -4.0892 -1.4355 0.9680 -1.2880 0.5828 -0.2302 -0.5916 6.7346 4.1635 -0.0640 -6.9024] OutputCoef: [13x1 double] OutputOffset: 183.0830 ans = 1.0015 17.7674 6.6782 ans = Columns 1 through 12 -1.9587 1.9238 1.8344 1.1216 2.4819 1.9029 0.7461 -3.0806 -0.2872 2.5524 3.4486 -1.3884 -0.0245 -0.1964 -1.8547 1.2147 0.0420 -2.9483 -0.2924 1.7971 0.0755 -0.5179 -0.9031 3.2111 5.8305 8.3523 0.6112 3.2744 -2.7473 0.0366 6.1359 0.1158 3.4826 -3.0737 0.2752 -0.9748 Column 13 -2.6254 0.5402 0.0715 ans = 26.6365 -32.0844 12.4778 -0.8223 -7.2964 5.3226 21.5580 -1.7478 -44.6054 6.7544 26.8001 -2.9696 11.9433
|
Pages: 1 Prev: "sensitivity" command Next: decimate() vs downsample() |