From: Steve on 29 Apr 2010 11:45 Hello, I'm trying to visualize the spread of a function(x,y) minima, caused by modeled measurement uncertainties, and how it changes by increasing the number of measurements. That's what i did so far: - generating a grid xy - evaluate a test function z=f(x,y) and add error term - perform fit to obtain function minima - compute cov(xmin,ymin) - plot the variances and covariances I have two questions: 1. I'm observing that the variances in x and y direction are significantly different. Not sure where I got something wrong? 2. Would you suggest a better way of quantifying the spread of the location of the minima. I'm not worried about the exact shape of the spread. Best Regards, PS.: FYI: this is not part of any homework assignment. Steve clear all close all clc a=-0.02; %min error limit b=0.02; %max error limit mink=5; %min grid size inck=5; %grid increment maxk=15; %max grid size index=1; %index used for saving cov for k=mink:inck:maxk [x,y]=meshgrid(linspace(-5,5,k)); for i=1:100 %rand('state',sum(clock)); z0 = a + (b-a).*rand(size(x)); z=5.*(x.^2+y.^2).*(1+z0); M=[x(:).^2 (-2.*x(:)) y(:).^2 (-2.*y(:)) ones(size(x(:)))]; sol = pinv(M)*z(:); zrec=sol(1).*x.^2 -2.*sol(2).*x + sol(3).*y.^2 -2.*sol(4).*y +sol(5).*ones(size(x)); figure(k) plot(sol(2),sol(4),'o') hold on data(i,1)=sol(1); data(i,2)=sol(2); end axis equal hold off temp=cov(data(:,1),data(:,2)); covdata11(index)=temp(1,1); covdata12(index)=temp(1,2); covdata21(index)=temp(2,1); covdata22(index)=temp(2,2); index=index+1; end ki=mink:inck:maxk figure(1) plot(ki,covdata11,'o') hold on plot(ki,covdata12,'x') hold on plot(ki,covdata21,'*') hold on plot(ki,covdata22,'v')
|
Pages: 1 Prev: Storage container for multiple object types Next: garchx |