Prev: R2009a "Out of Memory" problem on WinXP SP2
Next: Plotting cost function in Linear Regression Analysis
From: Matt J on 27 Jun 2010 09:35 "Boby Philip" <philipboby(a)yahoo.co.in> wrote in message <i06msg$o4m$1(a)fred.mathworks.com>... > Hi Matt, > ??? Error using ==> eig > NaN or Inf prevents convergence. > > Error in ==> poly at 26 > e = eig(x); > this is the message I get when i executed above command ================ I'd imagine it's for similar reasons. Some of your matrix entries either are Inf, or suffciently close to it.
From: Boby Philip on 27 Jun 2010 13:08 "Matt J " <mattjacREMOVE(a)THISieee.spam> wrote in message <i07k29$m62$1(a)fred.mathworks.com>... > "Boby Philip" <philipboby(a)yahoo.co.in> wrote in message <i06msg$o4m$1(a)fred.mathworks.com>... > > > Hi Matt, > > ??? Error using ==> eig > > NaN or Inf prevents convergence. > > > > Error in ==> poly at 26 > > e = eig(x); > > this is the message I get when i executed above command > ================ > > I'd imagine it's for similar reasons. Some of your matrix entries either are Inf, or suffciently close to it. ********************************* eig(A) ans = -0.0031 + 0.6234i -0.0031 - 0.6234i -0.0070 + 1.4064i -0.0070 - 1.4064i -0.0089 + 1.7872i -0.0089 - 1.7872i -0.0115 + 2.2968i -0.0115 - 2.2968i -0.0124 + 2.4893i -0.0124 - 2.4893i -0.0129 + 2.5763i -0.0129 - 2.5763i -0.0193 + 3.8619i -0.0193 - 3.8619i -0.0196 + 3.9141i -0.0196 - 3.9141i -0.0280 + 5.5999i -0.0280 - 5.5999i -0.0281 + 5.6272i -0.0281 - 5.6272i -0.0305 + 6.0976i -0.0305 - 6.0976i -0.0397 + 7.9334i -0.0397 - 7.9334i -0.0406 + 8.1169i -0.0406 - 8.1169i -0.0461 + 9.2165i -0.0461 - 9.2165i -0.0462 + 9.2336i -0.0462 - 9.2336i -0.0478 + 9.5541i -0.0478 - 9.5541i -0.0488 + 9.7692i -0.0488 - 9.7692i -0.0489 + 9.7701i -0.0489 - 9.7701i -0.0489 + 9.7719i -0.0489 - 9.7719i -0.0513 +10.2622i -0.0513 -10.2622i -0.0538 +10.7621i -0.0538 -10.7621i -0.0668 +13.3690i -0.0668 -13.3690i -0.0874 +17.4698i -0.0874 -17.4698i -0.0917 +18.3300i -0.0917 -18.3300i -0.1046 +20.9260i -0.1046 -20.9260i -0.1081 +21.6164i -0.1081 -21.6164i -0.1124 +22.4747i -0.1124 -22.4747i -0.1352 +27.0321i -0.1352 -27.0321i -0.1369 +27.3856i -0.1369 -27.3856i -0.1441 +28.8285i -0.1441 -28.8285i -0.1441 +28.8285i -0.1441 -28.8285i -0.1528 +30.5676i -0.1528 -30.5676i -0.1592 +31.8417i -0.1592 -31.8417i -0.1592 +31.8418i -0.1592 -31.8418i -0.1675 +33.4977i -0.1675 -33.4977i -0.1694 +33.8776i -0.1694 -33.8776i -0.1694 +33.8806i -0.1694 -33.8806i -0.1694 +33.8852i -0.1694 -33.8852i -0.1746 +34.9223i -0.1746 -34.9223i -0.1754 +35.0764i -0.1754 -35.0764i -0.1957 +39.1474i -0.1957 -39.1474i -0.2006 +40.1135i -0.2006 -40.1135i -0.2093 +41.8582i -0.2093 -41.8582i -0.2111 +42.2159i -0.2111 -42.2159i -0.2127 +42.5317i -0.2127 -42.5317i -0.2148 +42.9663i -0.2148 -42.9663i -0.2186 +43.7133i -0.2186 -43.7133i -0.2207 +44.1418i -0.2207 -44.1418i -0.2207 +44.1465i -0.2207 -44.1465i -0.2264 +45.2847i -0.2264 -45.2847i -0.2287 +45.7318i -0.2287 -45.7318i -0.2335 +46.6986i -0.2335 -46.6986i -0.2344 +46.8708i -0.2344 -46.8708i -0.2399 +47.9798i -0.2399 -47.9798i -0.2538 +50.7550i -0.2538 -50.7550i -0.2626 +52.5172i -0.2626 -52.5172i -0.2633 +52.6521i -0.2633 -52.6521i -0.2705 +54.0994i -0.2705 -54.0994i -0.2807 +56.1311i -0.2807 -56.1311i -0.2834 +56.6810i -0.2834 -56.6810i -0.2868 +57.3685i -0.2868 -57.3685i -0.2927 +58.5450i -0.2927 -58.5450i -0.2928 +58.5554i -0.2928 -58.5554i -0.2928 +58.5554i -0.2928 -58.5554i -0.2936 +58.7205i -0.2936 -58.7205i -0.2936 +58.7205i -0.2936 -58.7205i -0.2938 +58.7559i -0.2938 -58.7559i -0.3067 +61.3391i -0.3067 -61.3391i -0.0039 + 0.7751i -0.0039 - 0.7751i -0.0070 + 1.4066i -0.0070 - 1.4066i -0.0100 + 1.9920i -0.0100 - 1.9920i -0.0115 + 2.3060i -0.0115 - 2.3060i -0.0125 + 2.4908i -0.0125 - 2.4908i -0.0129 + 2.5774i -0.0129 - 2.5774i -0.0269 + 5.3780i -0.0269 - 5.3780i -0.0269 + 5.3780i -0.0269 - 5.3780i -0.0293 + 5.8631i -0.0293 - 5.8631i -0.0293 + 5.8631i -0.0293 - 5.8631i -0.0305 + 6.1015i -0.0305 - 6.1015i -0.0424 + 8.4808i -0.0424 - 8.4808i -0.0406 + 8.1206i -0.0406 - 8.1206i -0.0461 + 9.2224i -0.0461 - 9.2224i -0.0478 + 9.5536i -0.0478 - 9.5536i -0.0488 + 9.7692i -0.0488 - 9.7692i -0.0489 + 9.7701i -0.0489 - 9.7701i -0.0489 + 9.7719i -0.0489 - 9.7719i -0.0513 +10.2583i -0.0513 -10.2583i -0.0668 +13.3508i -0.0668 -13.3508i -0.0539 +10.7861i -0.0539 -10.7861i -0.0764 +15.2798i -0.0764 -15.2798i -0.0875 +17.4959i -0.0875 -17.4959i -0.0919 +18.3877i -0.0919 -18.3877i -0.1054 +21.0764i -0.1054 -21.0764i -0.1083 +21.6557i -0.1083 -21.6557i -0.1124 +22.4750i -0.1124 -22.4750i -0.1352 +27.0323i -0.1352 -27.0323i -0.1369 +27.3856i -0.1369 -27.3856i -0.1508 +30.1503i -0.1508 -30.1503i -0.1507 +30.1467i -0.1507 -30.1467i -0.1528 +30.5681i -0.1528 -30.5681i -0.1651 +33.0130i -0.1651 -33.0130i -0.1651 +33.0128i -0.1651 -33.0128i -0.1675 +33.4977i -0.1675 -33.4977i -0.1694 +33.8776i -0.1694 -33.8776i -0.1694 +33.8806i -0.1694 -33.8806i -0.1694 +33.8852i -0.1694 -33.8852i -0.1957 +39.1437i -0.1957 -39.1437i -0.1899 +37.9851i -0.1899 -37.9851i -0.2005 +40.1090i -0.2005 -40.1090i -0.2093 +41.8566i -0.2093 -41.8566i -0.2111 +42.2159i -0.2111 -42.2159i -0.2126 +42.5247i -0.2126 -42.5247i -0.2148 +42.9663i -0.2148 -42.9663i -0.2186 +43.7133i -0.2186 -43.7133i -0.2207 +44.1415i -0.2207 -44.1415i -0.2207 +44.1465i -0.2207 -44.1465i -0.2264 +45.2844i -0.2264 -45.2844i -0.2287 +45.7302i -0.2287 -45.7302i -0.2335 +46.6961i -0.2335 -46.6961i -0.2340 +46.8074i -0.2340 -46.8074i -0.2392 +47.8348i -0.2392 -47.8348i -0.2537 +50.7478i -0.2537 -50.7478i -0.2626 +52.5111i -0.2626 -52.5111i -0.2705 +54.0975i -0.2705 -54.0975i -0.2645 +52.8937i -0.2645 -52.8937i -0.2805 +56.0933i -0.2805 -56.0933i -0.2864 +57.2803i -0.2864 -57.2803i -0.2834 +56.6864i -0.2834 -56.6864i -0.2869 +57.3697i -0.2869 -57.3697i -0.2927 +58.5450i -0.2927 -58.5450i -0.2928 +58.5593i -0.2928 -58.5593i -0.2928 +58.5593i -0.2928 -58.5593i -0.2936 +58.7279i -0.2936 -58.7279i -0.2936 +58.7279i -0.2936 -58.7279i -0.2938 +58.7559i -0.2938 -58.7559i these are the eigen values of the matrix
From: Matt J on 28 Jun 2010 10:24 "Boby Philip" <philipboby(a)yahoo.co.in> wrote in message <i080hl$8b1$1(a)fred.mathworks.com>... > these are the eigen values of the matrix Probably not, due to numerical issues that the others pointed out. In any case, this seems to contradict what you reported previously. Previously you reported that poly(A) crashed when calling eig(). Doesn't seem to be the case here...
First
|
Prev
|
Pages: 1 2 3 Prev: R2009a "Out of Memory" problem on WinXP SP2 Next: Plotting cost function in Linear Regression Analysis |