From: M.A.Fajjal on
Evaluate

sum(floor(k/a)*floor(k/b),k=1..a*b-1)

where gcd(a,b)=1
From: Raymond Manzoni on
M.A.Fajjal a écrit :
> Evaluate
>
> sum(floor(k/a)*floor(k/b),k=1..a*b-1)
>
> where gcd(a,b)=1


I'll conjecture that this is :

(a + b + 4 a b + 1) (a - 1) (b - 1) / 12


Hoping it helped a little,
Raymond
From: Robert Israel on
Raymond Manzoni <raymman(a)free.fr> writes:

> M.A.Fajjal a écrit :
> > Evaluate
> >
> > sum(floor(k/a)*floor(k/b),k=1..a*b-1)
> >
> > where gcd(a,b)=1
>
>
> I'll conjecture that this is :
>
> (a + b + 4 a b + 1) (a - 1) (b - 1) / 12
>
>
> Hoping it helped a little,
> Raymond

I'm assuming a and b are positive integers. Let n = a*b.
For i in {0,...,a-1} and j in {0,...,b-1}, let K(i,j) be the
unique integer k in {0,...,ab-1} such that k == i mod a and
k == j mod b. Note that floor(K(i,j)/a) = (K(i,j)-i)/a
and floor(K(i,j)/a) = (K(i,j)-j)/b. So your sum is
sum_{i=0}^{a-1} sum_{j=0}^{b-1} (K(i,j) - i)(K(i,j) - j)/(ab)
= sum_{i=0}^{a-1} sum_{j=0}^{b-1} (K(i,j)^2 - i K(i,j) - j K(i,j) + ij)/(ab)

sum_{i=0}^{a-1} sum_{j=0}^{b-1} K(i,j)^2 = sum_{k=0}^{ab-1} k^2
= a b (a b - 1) (2 a b - 1)/6

sum_{i=0}^{a-1} sum_{j=0}^{b-1} i K(i,j)
= sum_{i=0}^{a-1} sum_{m=0}^{b-1} i (m a + i)
= a b (a - 1) (3 a b + a - 2) / 12

similarly
sum_{i=0}^{a-1} sum_{j=0}^{b-1} j K(i,j)
= a b (b - 1) (3 a b + b - 2) / 12

sum_{i=0}^{a-1} sum_{j=0}^{b-1} i j = a b (a-1) (b - 1)/4

After some simplification (with Maple's help), the result is
as Raymond conjectured.
--
Robert Israel israel(a)math.MyUniversitysInitials.ca
Department of Mathematics http://www.math.ubc.ca/~israel
University of British Columbia Vancouver, BC, Canada
From: Raymond Manzoni on
Robert Israel a �crit :
> Raymond Manzoni <raymman(a)free.fr> writes:
>
>> M.A.Fajjal a écrit :
>>> Evaluate
>>>
>>> sum(floor(k/a)*floor(k/b),k=1..a*b-1)
>>>
>>> where gcd(a,b)=1
>>
>> I'll conjecture that this is :
>>
>> (a + b + 4 a b + 1) (a - 1) (b - 1) / 12
>>
>>
>> Hoping it helped a little,
>> Raymond
>
> I'm assuming a and b are positive integers. Let n = a*b.
> For i in {0,...,a-1} and j in {0,...,b-1}, let K(i,j) be the
> unique integer k in {0,...,ab-1} such that k == i mod a and
> k == j mod b. Note that floor(K(i,j)/a) = (K(i,j)-i)/a
> and floor(K(i,j)/a) = (K(i,j)-j)/b. So your sum is
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} (K(i,j) - i)(K(i,j) - j)/(ab)
> = sum_{i=0}^{a-1} sum_{j=0}^{b-1} (K(i,j)^2 - i K(i,j) - j K(i,j) + ij)/(ab)
>
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} K(i,j)^2 = sum_{k=0}^{ab-1} k^2
> = a b (a b - 1) (2 a b - 1)/6
>
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} i K(i,j)
> = sum_{i=0}^{a-1} sum_{m=0}^{b-1} i (m a + i)
> = a b (a - 1) (3 a b + a - 2) / 12
>
> similarly
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} j K(i,j)
> = a b (b - 1) (3 a b + b - 2) / 12
>
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} i j = a b (a-1) (b - 1)/4
>
> After some simplification (with Maple's help), the result is
> as Raymond conjectured.


Your K(i,j) trick is rather nice thanks!
Raymond
From: M.A.Fajjal on
> Raymond Manzoni <raymman(a)free.fr> writes:
>
> > M.A.Fajjal a écrit :
> > > Evaluate
> > >
> > > sum(floor(k/a)*floor(k/b),k=1..a*b-1)
> > >
> > > where gcd(a,b)=1
> >
> >
> > I'll conjecture that this is :
> >
> > (a + b + 4 a b + 1) (a - 1) (b - 1) / 12
> >
> >
> > Hoping it helped a little,
> > Raymond
>
> I'm assuming a and b are positive integers. Let n =
> a*b.
> For i in {0,...,a-1} and j in {0,...,b-1}, let K(i,j)
> be the
> unique integer k in {0,...,ab-1} such that k == i mod
> a and
> k == j mod b. Note that floor(K(i,j)/a) =
> (K(i,j)-i)/a
> and floor(K(i,j)/a) = (K(i,j)-j)/b. So your sum is
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} (K(i,j) - i)(K(i,j) -
> j)/(ab)
> = sum_{i=0}^{a-1} sum_{j=0}^{b-1} (K(i,j)^2 - i
> K(i,j) - j K(i,j) + ij)/(ab)
>
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} K(i,j)^2 =
> sum_{k=0}^{ab-1} k^2
> = a b (a b - 1) (2 a b - 1)/6
>
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} i K(i,j)
> = sum_{i=0}^{a-1} sum_{m=0}^{b-1} i (m a + i)
> = a b (a - 1) (3 a b + a - 2) / 12
>
> similarly
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} j K(i,j)
> = a b (b - 1) (3 a b + b - 2) / 12
>
> sum_{i=0}^{a-1} sum_{j=0}^{b-1} i j = a b (a-1) (b -
> 1)/4
>
> After some simplification (with Maple's help), the
> result is
> as Raymond conjectured.
> --
> Robert Israel
> israel(a)math.MyUniversitysInitials.ca
> Department of Mathematics
> http://www.math.ubc.ca/~israel
> University of British Columbia Vancouver,
> BC, Canada

Thanks

what about gcd(a,b)=/= 1 where a,b are positive intergers