From: Vladimir Bondarenko on
Hello,

Mathematica:

Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]

Maple:

tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))

Can you get rid of these tan/arctan ?

Cheers,

Vladimir Bondarenko

Co-founder, CEO, Mathematical Director

http://www.cybertester.com/ Cyber Tester Ltd.

----------------------------------------------------------------

"We must understand that technologies
like these are the way of the future."

----------------------------------------------------------------
----------------------------------------------------------------

http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5

"...... the challenges imply that a solution is built within the
framework of the existent CAS functions & built-in definitions."

----------------------------------------------------------------
----------------------------------------------------------------
From: Peter Pein on
Am Wed, 4 Aug 2010 08:07:33 -0700 (PDT)
schrieb Vladimir Bondarenko <vb(a)cybertester.com>:

> Hello,
>
> Mathematica:
>
> Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817*
> Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]]
>
> Maple:
>
> tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
> 2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))
>
> Can you get rid of these tan/arctan ?
>
> Cheers,
>
> Vladimir Bondarenko
>
> Co-founder, CEO, Mathematical Director
>
> http://www.cybertester.com/ Cyber Tester Ltd.
>
> ----------------------------------------------------------------
>
> "We must understand that technologies
> like these are the way of the future."
>
> ----------------------------------------------------------------
> ----------------------------------------------------------------
>
> http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5
>
> "...... the challenges imply that a solution is built within the
> framework of the existent CAS functions & built-in definitions."
>
> ----------------------------------------------------------------
> ----------------------------------------------------------------

using Mathematica without really knowing what I do:

In[1]:= f[x_] = Tan[ArcTan[(16 Sqrt[2] (11030013328417 +
6423142241817 x)) / (80380562320289 + 43647808257288 x)] / 4];

In[2]:= simp = ToRadicals[RootReduce[FullSimplify[
TrigToExp[ComplexExpand[f[x], TargetFunctions -> {Abs, Log}]] /. x
-> Sqrt[3]]]]
Out[2]= 3848 / Sqrt[68740346 + 39590775 Sqrt[3]]

and tan/arctan have gone :-)

test:

In[3]:= SeriesCoefficient[simp-f[x],{x,Sqrt[3],0}]
Out[3]= 0

From: Thomas Richard on
On 4 Aug., 17:07, Vuvuzela <v...(a)cybertester.com> wrote:

> Maple:
>
> tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)*
> 2^(1/2)/(43647808257288*3^(1/2)+80380562320289)))
>
> Can you get rid of these tan/arctan ?

Here's one way:

> radnormal(convert(%,expln),rationalized);

-18468*sqrt(2)*sqrt(3)/9959+34300*sqrt(2)/9959

--
Thomas Richard
Maplesoft Europe GmbH