From: Vladimir Bondarenko on 4 Aug 2010 11:07 Hello, Mathematica: Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817* Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]] Maple: tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)* 2^(1/2)/(43647808257288*3^(1/2)+80380562320289))) Can you get rid of these tan/arctan ? Cheers, Vladimir Bondarenko Co-founder, CEO, Mathematical Director http://www.cybertester.com/ Cyber Tester Ltd. ---------------------------------------------------------------- "We must understand that technologies like these are the way of the future." ---------------------------------------------------------------- ---------------------------------------------------------------- http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 "...... the challenges imply that a solution is built within the framework of the existent CAS functions & built-in definitions." ---------------------------------------------------------------- ----------------------------------------------------------------
From: Peter Pein on 4 Aug 2010 23:06 Am Wed, 4 Aug 2010 08:07:33 -0700 (PDT) schrieb Vladimir Bondarenko <vb(a)cybertester.com>: > Hello, > > Mathematica: > > Tan[1/4 ArcTan[(16 Sqrt[2] (11030013328417+6423142241817* > Sqrt[3]))/(80380562320289 + 43647808257288 Sqrt[3])]] > > Maple: > > tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)* > 2^(1/2)/(43647808257288*3^(1/2)+80380562320289))) > > Can you get rid of these tan/arctan ? > > Cheers, > > Vladimir Bondarenko > > Co-founder, CEO, Mathematical Director > > http://www.cybertester.com/ Cyber Tester Ltd. > > ---------------------------------------------------------------- > > "We must understand that technologies > like these are the way of the future." > > ---------------------------------------------------------------- > ---------------------------------------------------------------- > > http://groups.google.com/group/sci.math/msg/9f429c3ea5649df5 > > "...... the challenges imply that a solution is built within the > framework of the existent CAS functions & built-in definitions." > > ---------------------------------------------------------------- > ---------------------------------------------------------------- using Mathematica without really knowing what I do: In[1]:= f[x_] = Tan[ArcTan[(16 Sqrt[2] (11030013328417 + 6423142241817 x)) / (80380562320289 + 43647808257288 x)] / 4]; In[2]:= simp = ToRadicals[RootReduce[FullSimplify[ TrigToExp[ComplexExpand[f[x], TargetFunctions -> {Abs, Log}]] /. x -> Sqrt[3]]]] Out[2]= 3848 / Sqrt[68740346 + 39590775 Sqrt[3]] and tan/arctan have gone :-) test: In[3]:= SeriesCoefficient[simp-f[x],{x,Sqrt[3],0}] Out[3]= 0
From: Thomas Richard on 5 Aug 2010 03:35 On 4 Aug., 17:07, Vuvuzela <v...(a)cybertester.com> wrote: > Maple: > > tan(1/4*arctan(16*(6423142241817*3^(1/2)+11030013328417)* > 2^(1/2)/(43647808257288*3^(1/2)+80380562320289))) > > Can you get rid of these tan/arctan ? Here's one way: > radnormal(convert(%,expln),rationalized); -18468*sqrt(2)*sqrt(3)/9959+34300*sqrt(2)/9959 -- Thomas Richard Maplesoft Europe GmbH
|
Pages: 1 Prev: Matlab animation error Next: returning structure of data from a callback funtion |